

ISMIR Tutorial

Daejeon, Korea, September 21, 2025

Differentiable Alignment Techniques for Music Processing: Techniques and Applications

Part 1: Introduction to Alignment Techniques

Meinard Müller, Johannes Zeitler

International Audio Laboratories Erlangen {meinard.mueller, johannes.zeitler}@audiolabs-erlangen.de

Overview

Part 0: Overview

Part 1: Introduction to Alignment Techniques

Coffee Break

Part 2: Theoretical Foundations & Implementation

Karajan (Orchester)

Karajan (Orchester)

Time-chroma representations

Karajan (Orchester)

Time-chroma representations

Karajan (Orchester)

Time-chroma representations

Karajan (Orchester)

Time-chroma representations

Cost matrix

Cost matrix

Cost-minimizing warping path

Cost-minimizing warping path

Karajan (Orchester)

Gould (Piano)

Cost-minimizing warping path

→ Strong alignment

Feature Learning

- Task: Learn audio features using a neural network
- Loss: Binary cross-entropy
 - framewise loss
 - requires strongly aligned targets
 - hard to obtain

Feature Learning

- Task: Learn audio features using a neural network
- Loss: Binary cross-entropy
 - framewise loss
 - requires strongly aligned targets
 - hard to obtain
- Alignment as part of loss function
 - requires only weakly aligned targets
 - needs to be differentiable
- Problem: DTW is not differentiable
 - → Soft DTW

$$X := (x_1, x_2, \dots, x_N)$$

$$Y := (y_1, y_2, \dots, y_M)$$

$$x_n, y_m \in \mathcal{F}, n \in [1:N], m \in [1:M]$$

 \mathcal{F} = Feature space

Alignment

Alignment matrix

$$A \in \{0, 1\}^{N \times M}$$

Set of all possible alignment matrices

$$\mathcal{A}_{N,M} \subset \{0,1\}^{N \times M}$$

$$X := (x_1, x_2, \dots, x_N)$$

$$Y := (y_1, y_2, \dots, y_M)$$

$$x_n, y_m \in \mathcal{F}, n \in [1:N], m \in [1:M]$$

 \mathcal{F} = Feature space

Alignment

Alignment matrix

$$A \in \{0, 1\}^{N \times M}$$

Set of all possible alignment matrices

$$\mathcal{A}_{N,M} \subset \{0,1\}^{N \times M}$$

$$X := (x_1, x_2, \dots, x_N)$$

$$Y := (y_1, y_2, \dots, y_M)$$

$$x_n, y_m \in \mathcal{F}, n \in [1:N], m \in [1:M]$$

$$\mathcal{F}$$
 = Feature space

Cost measure: $c: \mathcal{F} \times \mathcal{F} \to \mathbb{R}_{\geq 0}$

Cost matrix: $C \in \mathbb{R}^{N \times M}$ with $C(n, m) := c(x_n, y_m)$

Cost of alignment: $\langle A, C \rangle$

DTW cost: $DTW(C) = \min \left(\{ \langle A, C \rangle \mid A \in \mathcal{A}_{N,M} \} \right)$

Optimal alignment: $A^* = \operatorname{argmin} (\{ \langle A, C \rangle \mid A \in \mathcal{A}_{N,M} \})$

Alignment matrix

$$A \in \{0, 1\}^{N \times M}$$

Set of all possible alignment matrices

$$\mathcal{A}_{N,M} \subset \{0,1\}^{N \times M}$$

DTW cost: $DTW(C) = \min \left(\left\{ \langle A, C \rangle \mid A \in \mathcal{A}_{N,M} \right\} \right)$

Efficient computation via Bellman's recursion in O(NM)

$$D(n,m) = \min\{D(n-1,m), D(n,m-1), D(n,m)\} + C(n,m)$$

for *n>1* and *m>1* and suitable initialization

$$DTW(C) = D(N, M)$$

DTW cost:
$$DTW(C) = \min \left(\left\{ \langle A, C \rangle \mid A \in \mathcal{A}_{N,M} \right\} \right)$$

Efficient computation via Bellman's recursion in O(NM)

$$D(n,m) = \min\{D(n-1,m), D(n,m-1), D(n,m)\} + C(n,m)$$

for n>1 and m>1 and suitable initialization.

$$DTW(C) = D(N, M)$$

- Problem: DTW(C) is not differentiable with regard to C
- Idea: Replace min-function by a smooth version

$$\min^{\gamma} (S) = -\gamma \log \sum_{s \in S} \exp(-s/\gamma)$$

for set $\,\mathcal{S}\subset\mathbb{R}\,$ and temperature parameter $\,\gamma\in\mathbb{R}\,$

SDTW cost:
$$SDTW^{\gamma}(C) = \min^{\gamma} (\{\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}\})$$

Efficient computation via Bellman's recursion in O(NM) still works:

$$D^{\gamma}(n,m) = \min^{\gamma} \{D^{\gamma}(n-1,m), D^{\gamma}(n,m-1), D^{\gamma}(n,m)\} + C(n,m)$$

for n>1 and m>1 and suitable initialization.

$$SDTW^{\gamma}(C) = D^{\gamma}(N, M)$$

- Limit case: $\mathrm{SDTW}^{\gamma}(C) \xrightarrow{\gamma \to 0} \mathrm{DTW}(C)$
- SDTW(C) is differentiable with regard to C
- Questions:
 - How does the gradient look like?
 - Can it be computed efficiently?
 - How does SDTW generalize the alignment concept?

SDTW cost: $SDTW^{\gamma}(C) = \min^{\gamma} (\{\langle A, C \rangle \mid A \in \mathcal{A}_{N,M}\})$

- Define $p^{\gamma}(C)$ as the following "probability" distribution over $\mathcal{A}_{N,M}$:

$$p^{\gamma}(C)_{A} = \frac{\exp\left(-\langle A, C \rangle / \gamma\right)}{\sum_{A' \in \mathcal{A}_{N,M}} \exp\left(-\langle A', C \rangle / \gamma\right)} \qquad \text{for } A \in \mathcal{A}_{N,M}$$

• The expected alignment with respect to $p^{\gamma}(C)$ is given by:

$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

The gradient is given by:

$$\nabla_C \mathrm{SDTW}^{\gamma}(C) = E^{\gamma}(C)$$

The gradient can be computed efficiently in O(NM) via a recursive algorithm.

Soft-DTW

Cuturi, Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, 2017

Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ

Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ

Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ

Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ

Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ

Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ

Expected alignment :
$$E^{\gamma}(C) = \sum_{A \in \mathcal{A}_{N,M}} p^{\gamma}(C)_A A \in \mathbb{R}^{N \times M}$$

- Can be interpreted as a smoothed version of an alignment
- Degree of smoothing depends on temperature parameter γ

Soft Dynamic Time Warping (SDTW) Conclusions

- Direct generalization of DTW (replacing min by smooth variant)
- Gradient is given by expected alignment
- Fast forward algorithm: O(NM)
- Fast gradient computation: O(NM)
- SDTW yields a (typically) poor lower bound for DTW
- Can be used as loss function to learn from weakly aligned sequences

Soft Dynamic Time Warping (SDTW) References

- Marco Cuturi, Mathieu Blondel: Soft-DTW: A Differentiable Loss Function for Time-Series. ICML, pages 894–903, 2017.
- Arthur Mensch, Mathieu Blondel: Differentiable Dynamic Programming for Structured Prediction and Attention, ICML, 2018.
- Michael Krause, Christof Weiß, Meinard Müller: Soft Dynamic Time Warping for Multi-Pitch Estimation and Beyond. IEEE ICASSP, 2023.

Thanks: Michale Krause (Ph.D. 2023) Johannes Zeitler (Ph.D.)

- Connectionist Temporal Classification (CTC)
- Graves, Fernández, Gomez, and Schmidhuber:
 Connectionist Temporal Classification:
 Labelling Unsegmented Sequence Data with Recurrent Neural Networks.
 ICML, 2006.
- Temporal Classification: Labelling unsegmented data sequences
- Connectionist: Refers to the use of deep learning

CTC Loss: Introduction Training data in speech recognition

- Strongly aligned training data
 - Character annotations (labels) for each time step
 - Can be used for training in a standard classification setup
 - Tedious to annotate
- Weakly aligned training data
 - Globally corresponding character sequence without local alignment
 - Cannot be used for training in a standard classification setup
 - Easier to annotate
- Aim of CTC: Employ only weakly aligned data for training

Training data in theme-based music retrieval

- Strongly aligned training data
 - Character annotations (labels) for each time step
 - Can be used for training in a standard classification setup
 - Tedious to annotate
- Weakly aligned training data
 - Globally corresponding character sequence without local alignment
 - Cannot be used for training in a standard classification setup
 - Easier to annotate
- Aim of CTC: Employ only weakly aligned data for training

Standard deep learning setup: Strongly aligned training data

Standard deep learning setup: Strongly aligned training data

Non-standard deep learning setup: Weakly aligned training data

CTC Loss: Introduction Alignment Representations

"Arrow" representation

"Point" representation

"Unfolded" representation

- Alphabet $\mathbb{A} = \{\alpha, \beta, \gamma\}$
- Label sequence $Y = (\alpha, \gamma, \beta)$

- Network output
- $f_{\theta}(\mathbf{X}) =$

• Alignment A is "expansion" of Y to length of $f_{\theta}(X)$ (possibly consecutive duplicates and blank symbols ϵ)

- Alphabet $\mathbb{A} = \{\alpha, \beta, \gamma\}$
- Label sequence $Y = (\alpha, \gamma, \beta)$
- Naive idea: "Hard" alignment (Related: Viterbi decoding)

$$P(\epsilon, \alpha, \alpha, \gamma, \beta, \beta, \epsilon, \epsilon) \approx 0.015$$

- Not suitable for gradient-descent-based training (not differentiable)
- Therefore: "Soft" alignment (Related: Forward algorithm)

- Alphabet $\mathbb{A} = \{\alpha, \beta, \gamma\}$
- Label sequence $Y = (\alpha, \gamma, \beta)$
- Naive idea: "Hard" alignment (Related: Viterbi decoding)

$$P(\epsilon, \alpha, \alpha, \gamma, \beta, \beta, \epsilon, \epsilon) \approx 0.015$$

- Not suitable for gradient-descent-based training (not differentiable)
- Therefore: "Soft" alignment (Related: Forward algorithm)

Theme-Based Audio Retrieval

Barlow & Morgenstern (1949): A Dictionary of Musical Themes

- 2067 themes by 54 different composers
- Recordings (1126 recordings, ~ 120 hours)
- Theme occurences (~ 5 hours)

Theme-Based Audio Retrieval Monophony-Polyphony Challenge

Monophonic symbolic musical theme

Audio recording of polyphonic music

Chromagram

Goal: Compute "enhanced" chromagram from polyphonic audio recording that better matches the symbolic monophonic theme

Theme-Based Audio Retrieval Strongly Aligned Training Data

Theme-Based Audio Retrieval Weakly Aligned Training Data

Network input for training: Weakly aligned score-audio $(G, G, G, E^{\flat}, F, F, F, D)$ pairs Convolutional neural network: Trained with the CTC loss Post-processed output of trained network: Enhanced chroma representation

Theme-Based Audio Retrieval

Framewise loss (strong annotations)

Salience Computation

Bittner, McFee, Salamon, Li, Bello: Deep salience representations for F0 tracking in polyphonic music. ISMIR, 2017.

Theme-Based Audio Retrieval

- Idea of CTC loss similar to SDTW
- Theme is given as label sequence over finite alphabet (size 13 including blank symbol)
- Expand label sequence to match audio feature sequence
 → valid alignment
- CTC loss considers probability over all valid alignments
 → differentiable

CTC Loss

Graves, Fernández, Gomez, Schmidhuber: Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. ICML, 2006.

Output sequence X

Valid alignment $G \, \epsilon \, G \, \epsilon \, G \, E^b \, E^b \, F \, \epsilon \, F \, E \, F \, D \, D \, D$

 \rightarrow matches sequence X

Label sequence Y
GGGE^bFFFD

Output sequence X

Set of all valid alignments

$$\mathbb{K}_{X,Y} = \{ A \in (\mathbb{A}')^N : \kappa(A) = Y \}$$

Probability of label sequence

$$P(Y\mid X) = \sum\nolimits_{A\in \mathbb{K}_{X,Y}} P(A\mid X)$$

CTC loss

$$L_{\theta}(X, Y) = -\log P(Y \mid X)$$

Output sequence X

Theme-Based Audio Retrieval Evaluation Results

Chroma Variant	Top-1	Top-10
Standard chromagram	0.561	0.723
Enhanced chromagram (baseline)	0.824	0.861
DNN-based chromagram (CTC)	0.867	0.942
DNN-based chromagram (linear scaling)	0.829	0.914
DNN-based chromagram (strong alignment)	0.882	0.939

Theme-Based Audio Retrieval References

- R. Bittner, B. McFee, J. Salamon, P. Li, and J. Bello: Deep salience representations for F0 tracking in polyphonic music. Proc. ISMIR, pages 63–70, 2017.
- A. Graves, S. Fernández, F. J. Gomez, and J. Schmidhuber: Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks. ICML, 2006.
- F. Zalkow, S. Balke, V. Arifi-Müller, and M. Müller. MTD: A multimodal dataset of musical themes for MIR research. TISMIR, 3(1), 2020.
- F. Zalkow, S. Balke, and M. Müller. Evaluating salience representations for cross-modal retrieval of Western classical music recordings. Proc. ICASSP, 2019.
- F. Zalkow and M. Müller. CTC-based learning of deep chroma features for score-audio music retrieval. 2021.
 IEEE/ACM Trans. on Audio, Speech, and Language Processing, 29, pages 2957–2971, 2021.

Thanks:

Frank Zalkow (Ph.D. 2021) Stefan Balke (Ph.D. 2018)

Ich träumte von bunten Blumen, so wie sie wohl blühen im Mai

CTC Loss for Lyrics Alignment

Stoller, Durand, Ewert: End-to-end Lyrics Alignment for Polyphonic Music Using an Audio-To-Character Recognition Model. ICASSP 2019.

Lyrics-Audio

CTC Loss for Lyrics Alignment

Stoller, Durand, Ewert: End-to-end Lyrics Alignment for Polyphonic Music Using an Audio-To-Character Recognition Model. ICASSP 2019.

Ich träumte von bunten Blumen, so wie sie wohl blühen im Mai

Multimodal Lyrics Alignment

Müller, Kurth, Damm, Fremerey, Clausen: Lyrics-based Audio Retrieval and Multimodal Navigation in Music Collections. ECDL 2007.

Lyrics-MIDI

Lyrics-Audio

MIDI-Audio

Multimodal Lyrics Alignment

Müller, Kurth, Damm, Fremerey, Clausen: Lyrics-based Audio Retrieval and Multimodal Navigation in Music Collections. ECDL 2007.

Datasets

Schubert Winterreise Dataset (SWD)

- Song cycle by Franz Schubert
- 24 songs
- 9 performances (versions)
- Annotations
 - Lyrics
 - Chords
 - Local keys
 - Structure

Weiß et al.: Schubert Winterreise Dataset: A Multimodal Scenario for Music Analysis ACM J. Computing & Cultural Heritage, 2021.

Datasets

Wagner Ring Dataset (WRD)

- Opera cycle by Richard Wagner
- 4 operas (ca. 22,000 meaures)
- 16 performances (versions)
- Annotations
 - Lyrics
 - Measure positions
 - Aligned reduced score
 - **-** ...

Weiß et al.: Wagner Ring Dataset: A Complex Opera Scenario for Music Processing and Computational Musicology, TISMIR 2023.

Datasets Beethoven Piano Sonata Dataset

- Piano Sontats by Beethoven
- 32 first movments
- 11 performances (versions)
- Annotations
 - Notes
 - Measures and beats
 - Chords, local & global keys
 - Musical structures

Zeitler et al.: BPSD: A Coherent Multi-Version Dataset for Analyzing the First Movements of Beethoven's Piano Sonatas. TISMIR 2024.

Datasets

Musical Theme Dataset (MTD)

- Western classical music
- Inspired by Barlow & Morgenstern (1948)
- 2067 themes
 - Symbolic encodings
 - Audio excerpts
 - Strong alignments
 - ..

Zalkow et al.: MTD: A Multimodal Dataset of Musical Themes for MIR Research. TISMIR 2020.

Soft Dynamic Time Warping (SDTW) Stabilizing Training

- Standard SDTW often unstable
 - Unstable training in early stages
 - Degenerate output alignment
- Hyperparameter adjustment
 - High temperature to smooth alignments
 - Temperature annealing
- Diagonal prior
- Modified step size condition

Soft Dynamic Time Warping (SDTW) Representation Learning

- Symmetric application
 - Learn representation of both sequences
 - Needs a contrastive loss term
- Assymmetric application
 - Use fixed (e.g., binary) encoding of target
 - Learn representation of only one sequences
 - No contrastive loss term need
- Simulation of CTC-loss using SDTW possible
- Many DTW variants also possible for SDTW

