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Motivation: Audio-Audio Alignment
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Motivation: Audio-Audio Alignment
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Motivation: Audio-Audio Alignment

Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

Karajan

(Orchester)

Gould

(Piano)

C
h
ro

m
a

C
h
ro

m
a

G

G

MusicSync_Feat_Chroma_Beet_Karajan_Short.mp3
MusicSync_Feat_Chroma_Beet_Gould_Short.mp3


© AudioLabs, 2025

Meinard Müller, Johannes Zeitler

ISMIR Tutorial: Differentiable Alignment Techniques for Music Processing

Part 1: Introduction to Alignment Techniques. Slide 7

Motivation: Audio-Audio Alignment
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Motivation: Audio-Audio Alignment
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Motivation: Audio-Audio Alignment
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Motivation: Audio-Audio Alignment

Beethoven’s Fifth

Time (indices)

T
im

e
 (

in
d
ic

e
s
)

K
a

ra
ja

n

Gould

Cost-minimizing 

warping path



© AudioLabs, 2025

Meinard Müller, Johannes Zeitler

ISMIR Tutorial: Differentiable Alignment Techniques for Music Processing

Part 1: Introduction to Alignment Techniques. Slide 12

Motivation: Audio-Audio Alignment

Beethoven’s Fifth

Cost-minimizing 

warping path
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Motivation: Audio-Audio Alignment

Beethoven’s Fifth

Time (indices)

Time (indices)

Karajan

(Orchester)

Gould

(Piano)

Cost-minimizing 

warping path

→ Strong alignment
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Feature Learning

Strong alignment

Input

Ouput

Targets

▪ Task: Learn audio features using a neural network

▪ Loss: Binary cross-entropy 

▪ framewise loss

▪ requires strongly aligned targets

▪ hard to obtain

Neural Network
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Feature Learning

Weak alignment

Input

Ouput

Targets

▪ Task: Learn audio features using a neural network

▪ Loss: Binary cross-entropy 

▪ framewise loss

▪ requires strongly aligned targets

▪ hard to obtain

▪ Alignment as part of loss function

▪ requires only weakly aligned targets

▪ needs to be differentiable

▪ Problem: DTW is not differentiable

→ Soft DTW

?

Neural Network
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Dynamic Time Warping (DTW)

Sequence X
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Dynamic Time Warping (DTW)
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Dynamic Time Warping (DTW)

=  Feature space

Cost measure:

Cost matrix:

Cost of alignment:

DTW cost:

with

Optimal alignment:

Alignment matrix

Set of all possible alignment matrices
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Dynamic Time Warping (DTW)

DTW cost:

▪ Efficient computation via Bellman’s recursion in O(NM)

for n>1 and m>1 and suitable initialization.  

1 2 3 4 5 6 7 8 9
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D(n,m)

DTW(C) = D(N,M) 

D(n,m-1)

D(n-1,m-1) D(n-1,m)

10 11

7

D(1,m)

D(n,1)

12 13 14
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Dynamic Time Warping (DTW)

DTW cost:

▪ Efficient computation via Bellman’s recursion in O(NM)

▪ Problem: DTW(C) is not differentiable with regard to C

▪ Idea: Replace min-function by a smooth version

for set                 and temperature parameter 

for n>1 and m>1 and suitable initialization.  
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Soft Dynamic Time Warping (SDTW)

SDTW cost:

▪ Efficient computation via Bellman’s recursion in O(NM) still works:

▪ Limit case:

▪ Questions:

‒ How does the gradient look like?

‒ Can it be computed efficiently?

‒ How does SDTW generalize the alignment concept?

for n>1 and m>1 and suitable initialization.  

▪ SDTW(C) is differentiable with regard to C
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Soft Dynamic Time Warping (SDTW)

SDTW cost:

▪ Define              as the following “probability” distribution over            : 

for

▪ The expected alignment with respect to             is given by:

▪ The gradient is given by: 

Soft-DTW
Cuturi, Blondel: Soft-DTW: A 

Differentiable Loss Function

for Time-Series. ICML, 2017

▪ The gradient can be computed efficiently in  O(NM) via a recursive algorithm.
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Soft Dynamic Time Warping (SDTW)
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Y

Sequence X

Expected alignment :

Cost matrix C 

▪ Can be interpreted as a smoothed version of an alignment

▪ Degree of smoothing depends on temperature parameter 𝛾 
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Soft Dynamic Time Warping (SDTW)

S
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Y

Sequence X

Expected alignment :

Cost matrix C 

▪ Can be interpreted as a smoothed version of an alignment

▪ Degree of smoothing depends on temperature parameter 𝛾 

Optimal alignment A*
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Soft Dynamic Time Warping (SDTW)

S
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Sequence X

Expected alignment :

▪ Can be interpreted as a smoothed version of an alignment

▪ Degree of smoothing depends on temperature parameter 𝛾 

𝐸𝛾 𝐶  with 𝛾 = 0 ( = A*
 )
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

▪ Can be interpreted as a smoothed version of an alignment

▪ Degree of smoothing depends on temperature parameter 𝛾 

𝐸𝛾 𝐶  with 𝛾 = 0.1 
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

▪ Can be interpreted as a smoothed version of an alignment

▪ Degree of smoothing depends on temperature parameter 𝛾 

𝐸𝛾 𝐶  with 𝛾 = 1 
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

▪ Can be interpreted as a smoothed version of an alignment

▪ Degree of smoothing depends on temperature parameter 𝛾 

𝐸𝛾 𝐶  with 𝛾 = 10 
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

▪ Can be interpreted as a smoothed version of an alignment

▪ Degree of smoothing depends on temperature parameter 𝛾 

𝐸𝛾 𝐶  with 𝛾 = 100 
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Soft Dynamic Time Warping (SDTW)

Conclusions

▪ Direct generalization of DTW (replacing min by smooth variant)

▪ Gradient is given by expected alignment

▪ Fast forward algorithm: O(NM)

▪ Fast gradient computation: O(NM)

▪ SDTW yields a (typically) poor lower bound for DTW

▪ Can be used as loss function to learn from weakly aligned sequences  
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Soft Dynamic Time Warping (SDTW)
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CTC Loss: Introduction

▪ Connectionist Temporal Classification (CTC)

▪ Graves, Fernández, Gomez, and Schmidhuber:  

Connectionist Temporal Classification: 

Labelling Unsegmented Sequence Data with Recurrent Neural Networks. 

ICML, 2006.

▪ Temporal Classification: Labelling unsegmented data sequences

▪ Connectionist: Refers to the use of deep learning
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CTC Loss: Introduction

Training data in speech recognition

𝜖 𝜖 ℎ 𝑒 𝑒 𝑙 𝑙 𝑜 𝑜 𝑜 𝑜 𝑜 𝜖 𝜖 𝜖 𝜖𝜖 𝜖 ℎ 𝑒 𝑒 𝑙 𝑙 𝑜 𝑜 𝑜 𝑜 𝑜 𝜖 𝜖 𝜖 𝜖

▪ Strongly aligned training data

▪ Character annotations (labels) for each time step

▪ Can be used for training in a standard classification 

setup

▪ Tedious to annotate

▪ Weakly aligned training data

▪ Globally corresponding character sequence without 

local alignment

▪ Cannot be used for training in a standard 

classification setup

▪ Easier to annotate

▪ Aim of CTC: Employ only weakly aligned data for 

training
ℎ 𝑒 𝑙 𝑙 𝑜

?    ?    ?    ?    ?

ℎ 𝑒 𝑙 𝑙 𝑜

FZ_hello.mp3
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CTC Loss: Introduction

Training data in theme-based music retrieval

▪ Strongly aligned training data

▪ Character annotations (labels) for each time step

▪ Can be used for training in a standard classification 

setup

▪ Tedious to annotate

▪ Weakly aligned training data

▪ Globally corresponding character sequence without 

local alignment

▪ Cannot be used for training in a standard 

classification setup

▪ Easier to annotate

▪ Aim of CTC: Employ only weakly aligned data for 

training

𝜖 𝐵♭ 𝐵♭ 𝜖 𝐵♭ 𝐵♭ 𝜖 𝐵 𝐵 𝜖 𝐴♭ 𝐴♭ 𝜖 𝐺 𝐺 𝐺

𝐵♭ 𝐵♭ 𝐵 𝐴♭ 𝐺

𝐵♭ 𝐵♭ 𝐵 𝐴♭ 𝐺

?    ?    ?    ?    ?

MTD0762_Beethoven_Op133_GuarneriQuartet_Short.mp3
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CTC Loss: Introduction

Standard deep learning setup: Strongly aligned training data

Loss (e.g., Cross-entropy)

→ Compares corresponding label 

     and predictions for each time

     step individually.

Training data: Input

Training data: Target labels

𝜖 𝛼 𝛼 𝛾 𝛽 𝛽 𝜖 𝜖

Network prediction
𝛼
𝛽
𝛾
𝜖

Neural network

Update
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CTC Loss: Introduction

Standard deep learning setup: Strongly aligned training data

Training data: Input

Training data: Target labels

𝜖 𝛼 𝛼 𝛾 𝛽 𝛽 𝜖 𝜖

Network prediction
𝛼
𝛽
𝛾
𝜖

Neural network
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CTC Loss: Introduction

Non-standard deep learning setup: Weakly aligned training data

Loss (e.g., CTC)

→ Compares labels and predictions

     based on temporal alignment

     computed as part of the loss.

Training data: Input

Training data: Target labels

𝛼 𝛾 𝛽

Network prediction
𝛼
𝛽
𝛾
𝜖

Neural network

Update
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CTC Loss: Introduction

Alignment Representations

“Arrow” representation

𝛼 𝛾 𝛽

𝛼
𝛽
𝛾
𝜖

𝛼 𝛼 𝛾 𝛽 𝛽 𝜖 𝜖𝜖

𝛼
𝛽
𝛾
𝜖

“Unfolded” representation

“Point” representation
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CTC Loss: Introduction

▪ Alphabet 𝔸 = 𝛼, 𝛽, 𝛾

▪ Label sequence 𝒀 = (𝛼, 𝛾, 𝛽)

▪ Network output          𝑓𝜃 𝑿 =

▪ Alignment 𝑨 is “expansion” of 𝒀 to length of 𝑓𝜃 𝑿  

(possibly consecutive duplicates and blank symbols 𝜖)

𝛼 𝛾 𝛽
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CTC Loss: Introduction

▪ Alphabet 𝔸 = 𝛼, 𝛽, 𝛾

▪ Label sequence 𝒀 = (𝛼, 𝛾, 𝛽)

▪ Naive idea: “Hard” alignment

(Related: Viterbi decoding)

▪ Not suitable for gradient-descent-based training (not differentiable)

▪ Therefore: “Soft” alignment

(Related: Forward algorithm)

⋮

𝑃(𝛼, 𝛼, 𝛼, 𝛼, 𝛼, 𝛼, 𝛾, 𝛽) ≈ 7.14 ∙ 10−7

𝑃(𝛼, 𝛼, 𝛼, 𝛼, 𝛼, 𝛾, 𝛽, 𝛽) ≈ 3.98 ∙ 10−7

𝑃(𝛼, 𝛼, 𝛼, 𝛼, 𝛼, 𝛾, 𝛽, 𝜖) ≈ 3.23 ∙ 10−6

⋮

𝑃(𝜖, 𝜖, 𝜖, 𝜖, 𝜖, 𝛼, 𝛾, 𝛽) ≈ 5.82 ∙ 10−6

𝑃(𝜖, 𝛼, 𝛼, 𝛾, 𝛽, 𝛽, 𝜖, 𝜖) ≈ 0.015

෍

𝑨

𝑃(𝑨) ≈ 0.069

𝛼 𝛾 𝛽
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CTC Loss: Introduction

▪ Alphabet 𝔸 = 𝛼, 𝛽, 𝛾

▪ Label sequence 𝒀 = (𝛼, 𝛾, 𝛽)

▪ Naive idea: “Hard” alignment

(Related: Viterbi decoding)

▪ Not suitable for gradient-descent-based training (not differentiable)

▪ Therefore: “Soft” alignment

(Related: Forward algorithm)

𝑃(𝜖, 𝛼, 𝛼, 𝛾, 𝛽, 𝛽, 𝜖, 𝜖) ≈ 0.015

𝛼 𝛾 𝛽

animation_paths.mp4
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Theme-Based Audio Retrieval

Barlow & Morgenstern (1949): A Dictionary of Musical Themes

▪ 2067 themes by 54 different composers

▪ Recordings (1126 recordings, ~ 120 hours)

▪ Theme occurences (~ 5 hours)

MTD1066_Beethoven_Op067-01_MIDI.mp3
MTD1066_Beethoven_Op067-01_Alig.mp3
MTD1066_Beethoven_Op067-01.mp3
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Theme-Based Audio Retrieval

Monophony–Polyphony Challenge

Monophonic symbolic musical theme

Goal: Compute “enhanced” chromagram from polyphonic audio recording  

          that better matches the symbolic monophonic theme

Audio recording of polyphonic music

Chromagram

MTD0815_Beethoven_Op002No2-01_MIDI.mp3
MTD0815_Beethoven_Op002No2-01.mp3
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Theme-Based Audio Retrieval

Strongly Aligned Training Data
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Theme-Based Audio Retrieval

Weakly Aligned Training Data

Network input  for training:

Weakly aligned score–audio 

pairs

Post-processed output of

trained network:

Enhanced chroma representation

?          ?          ?

Convolutional neural network:

Trained with the CTC loss
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Theme-Based Audio Retrieval

216 216

6 64 32 32 32 8 1

3

3

3

3

3

3

3

3

42

3

1

1

1

13

NN N

Framewise loss 

(strong annotations)

Salience Computation
Bittner, McFee, Salamon, Li, Bello: Deep 

salience representations for F0 tracking in 

polyphonic music. ISMIR, 2017.

Output sequence

A
lp

h
a
b
e
t 

(s
iz

e
 1

3
)

C

N1

ε
B

G

Eb
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Theme-Based Audio Retrieval

216 216

6 64 32 32 32 8 1

3

3

3

3

3

3

3

3

42

3

1

1

1

13

NN N

CTC loss 

(weak annotations)

CTC Loss
Graves, Fernández, Gomez, Schmidhuber: Connectionist

temporal classification: Labelling unsegmented sequence

data with recurrent neural networks. ICML, 2006.

▪ Idea of CTC loss similar to SDTW

▪ Theme is given as label sequence over finite alphabet 

(size 13 including blank symbol) 

▪ Expand label sequence to match audio feature sequence 

→ valid alignment

▪ CTC loss considers probability over all valid alignments 

→ differentiable  
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Theme-Based Audio Retrieval

CTC-Based Training
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Theme-Based Audio Retrieval

CTC-Based Training
A

lp
h
a
b
e
t

▪ Set of all valid alignments

▪ Probability of label sequence

▪ CTC loss
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Theme-Based Audio Retrieval
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Theme-Based Audio Retrieval

CTC-Based Training
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Theme-Based Audio Retrieval

Evaluation Results

Chroma Variant Top-1 Top-10

Standard chromagram 0.561 0.723

Enhanced chromagram (baseline)                       0.824       0.861

DNN-based chromagram (CTC)                          0.867       0.942

DNN-based chromagram (linear scaling)            0.829       0.914

DNN-based chromagram (strong alignment)       0.882       0.939

MTD0815_Beethoven_Op002No2-01_chroma-strong.mp3
MTD0815_Beethoven_Op002No2-01_chroma-linear.mp3
MTD0815_Beethoven_Op002No2-01_chroma-ctc.mp3
MTD0815_Beethoven_Op002No2-01_chroma-bosch.mp3
MTD0815_Beethoven_Op002No2-01_chroma-iir.mp3
MTD0815_Beethoven_Op002No2-01_chroma-midalig.mp3
MTD0815_Beethoven_Op002No2-01.mp3
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Theme-Based Audio Retrieval
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Lyrics–Audio Alignment

Ich träumte von bunten Blumen, so wie sie wohl blühen im Mai 

CTC Loss for Lyrics Alignment
Stoller, Durand, Ewert: End-to-end Lyrics Alignment for 

Polyphonic Music Using an Audio-To-Character Recognition 

Model. ICASSP 2019.

Schubert_d911_11_winterreise_allen_lyrics.mp3
Schubert_d911_11_winterreise_quasthoff_lyrics.mp3
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Lyrics–Audio Alignment

Ich träumte von bunten Blumen, so wie sie wohl blühen im Mai 

CTC Loss for Lyrics Alignment
Stoller, Durand, Ewert: End-to-end Lyrics Alignment for 

Polyphonic Music Using an Audio-To-Character Recognition 

Model. ICASSP 2019.

Lyrics-Audio

Schubert_d911_11_winterreise_allen_lyrics.mp3
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Lyrics–Audio Alignment

Ich träumte von bunten Blumen, so wie sie wohl blühen im Mai 

Multimodal Lyrics Alignment
Müller, Kurth, Damm, Fremerey, Clausen: Lyrics-based 

Audio Retrieval and Multimodal Navigation in Music 

Collections. ECDL 2007.

Lyrics-Audio

Schubert_d911_11_winterreise_allen_lyrics.mp3
Schubert_d911_11_winterreise_quasthoff_lyrics.mp3
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Lyrics–Audio Alignment

Ich träumte von bunten Blumen, so wie sie wohl blühen im Mai 

Lyrics-MIDI 

MIDI-Audio

Lyrics-Audio

Multimodal Lyrics Alignment
Müller, Kurth, Damm, Fremerey, Clausen: Lyrics-based 

Audio Retrieval and Multimodal Navigation in Music 

Collections. ECDL 2007.

Schubert_d911_11_winterreise_allen_lyrics.mp3
Schubert_d911_11_winterreise_quasthoff_lyrics.mp3
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Datasets

Schubert Winterreise Dataset (SWD)

▪ Song cycle by Franz Schubert

▪ 24 songs

▪ 9 performances (versions)

▪ Annotations

▪ Lyrics

▪ Chords

▪ Local keys

▪ Structure

Weiß et al.: Schubert Winterreise Dataset:

A Multimodal Scenario for Music Analysis

ACM J. Computing & Cultural Heritage, 2021.
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Datasets

Wagner Ring Dataset (WRD)

▪ Opera cycle by Richard Wagner

▪ 4 operas (ca. 22,000 meaures)

▪ 16 performances (versions)

▪ Annotations

▪ Lyrics

▪ Measure positions

▪ Aligned reduced score

▪ ...

Weiß et al.: Wagner Ring Dataset: A Complex 

Opera Scenario for Music Processing and 

Computational Musicology, TISMIR 2023.
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Datasets

Beethoven Piano Sonata Dataset

▪ Piano Sontats by Beethoven

▪ 32 first movments

▪ 11 performances (versions)

▪ Annotations

▪ Notes

▪ Measures and beats

▪ Chords, local & global keys

▪ Musical structures

Zeitler et al.: BPSD: A Coherent Multi-Version 

Dataset for Analyzing the First Movements of 

Beethoven's Piano Sonatas. TISMIR 2024.

Musical Motifs:

Hsiao, Hung, Chen, Su: BPS-Motif: 

A Dataset for Repeated Pattern 

Discovery of Polyphonic Symbolic 

Music. ISMIR 2023: 281-288
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Datasets

Musical Theme Dataset (MTD)

▪ Western classical music

▪ Inspired by Barlow &

Morgenstern (1948)

▪ 2067 themes

▪ Symbolic encodings

▪ Audio excerpts

▪ Strong alignments

▪ ...

Zalkow et al.: MTD: A Multimodal Dataset of 

Musical Themes for MIR Research. TISMIR

2020.

2067
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Soft Dynamic Time Warping (SDTW)

Stabilizing Training

▪ Standard SDTW often unstable

▪ Unstable training in early stages

▪ Degenerate output alignment 

▪ Hyperparameter adjustment

▪ High temperature to smooth alignments

▪ Temperature annealing 

▪ Diagonal prior

▪ Modified step size condition
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Soft Dynamic Time Warping (SDTW)

Representation Learning

▪ Symmetric application

▪ Learn representation of both sequences

▪ Needs a contrastive loss term

▪ Assymmetric application 

▪ Use fixed (e.g., binary) encoding of target

▪ Learn representation of only one sequences

▪ No contrastive loss term need

▪ Simulation of CTC-loss using SDTW possible 

▪ Many DTW variants also possible for SDTW
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