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Loss 
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Input 
Representations
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Richard, Lostanlen, Yang, Müller: Model-Based Deep Learning for Music Information Research: Leveraging Diverse Knowledge Sources
to Enhance Explainability, Controllability, and Resource Efficiency. IEEE Signal Processing Magazine, 41(6): 51–59, 2024
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Overview

 Multi-Scale Spectral Loss
Knowledge Source: Signal Representations

 Hierarchical Classification Loss
Knowledge Source: Musical Hierarchies

 Differentiable Alignment Loss
Knowledge Source: Temporal Coherence 

Simon Schwär
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Johannes Zeitler
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Example Scenario: Sinusoidal Frequency Estimation

1000

𝑓୲୥୲

Sinusoid with target frequency: 𝑓୲୥୲ ൌ 1000 Hz

Loss
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Loss

Sinusoid with target frequency: 𝑓୲୥୲ ൌ 1000 Hz

Sinusoid with estimated frequency: 𝑓 ୱ୲ ൌ 750 Hz

750

o

𝑓 ୱ୲

1000

𝑓୲୥୲
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Loss

Sinusoid with target frequency: 𝑓୲୥୲ ൌ 1000 Hz

o

Sinusoid with estimated frequency: 𝑓 ୱ୲ ൌ 972 Hz

1000
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Loss

Sinusoid with target frequency: 𝑓୲୥୲ ൌ 1000 Hz

𝑓 ୱ୲
o

Sinusoid with estimated frequency: 𝑓 ୱ୲ ൌ 1100 Hz

1000

𝑓୲୥୲
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Loss

Sinusoid with target frequency: 𝑓୲୥୲ ൌ 1000 Hz

Sinusoidal sweep of estimated frequencies 𝑓 ୱ୲
Loss landscape over estimates for a given target 
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𝑓୲୥୲
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Lo
ss

Loss landscape depends a lot on the chosen loss function to 
compare estimated and target signal
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© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
18

Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Lo
ss

Loss landscape depends a lot on the chosen loss function to 
compare estimated and target signal

 Loss function discussed later

1000
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Example Scenario: Sinusoidal Frequency Estimation

Estimated frequency (Hz)

Lo
ss

Loss landscape depends a lot on the chosen loss function to 
compare estimated and target signal

 Loss function discussed later
 Ideal convex loss
 Multi-Scale Spectral (MSS) loss with standard settings

The MSS loss is what we 
widely use in audio 
processing (e.g., DDSP) 
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Multi-Scale Spectral Loss 

 𝑥 input signal
 𝑁  window size 
 𝐻  hop size
 𝑤  window function
 𝑝   compression function
 𝑑   distance function 
 set of window sizes
 set of compression function

Spectrum

MSS loss
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Multi-Scale Spectral Loss 

 𝑥 input signal
 𝑁  window size 
 𝐻  hop size
 𝑤  window function
 𝑝   compression function
 𝑑   distance function 
 set of window sizes
 set of compression function

Spectrum

MSS loss

MSS loss with 
standard settings:
(WH, S4, C4, D1)
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Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz

Time domain Frequency domain
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Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing

Mainlobe

Sidelobes Sidelobes

Time domain
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid 
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid
 Second signal: Sinusoid with frequency 𝑓 ൌ 1003.9 Hz
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid
 Second signal: Sinusoid with frequency 𝑓 ൌ 1003.9 Hz

Distance depends on
 Grid sampling
 Mainlobe & sidelobes
 Window type 
 STFT parameters
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid
 Second signal: Sinusoid with frequency 𝑓 ൌ 1007.8 Hz
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 Grid sampling
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 Window type 
 STFT parameters
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Time domain Frequency domain
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid
 Second signal: Sinusoid with frequency 𝑓 ൌ 1020 Hz

Distance depends on
 Grid sampling
 Mainlobe & sidelobes
 Window type 
 STFT parameters
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Time domain Frequency domain

Spectrum-Based Distance

Hann window

 Input signal: Sinusoid with frequency 𝑓 ൌ 1000 Hz
 STFT → Spectral leakage due to windowing
 Discrete STFT → Frequency grid
 Second signal: Sinusoid with frequency 𝑓 ൌ 1020 Hz

Distance depends on
 Grid sampling
 Mainlobe & sidelobes
 Window type 
 STFT parameters
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Dependency: Window Type

Hann window

Time domain Frequency domain

© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
41

Dependency: Window Type

Hann window

Rectangular window

Time domain Frequency domain
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Dependency: Window Type

Hann window

Rectangular window

Flattop window

Time domain Frequency domain
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Dependency: Window Type

Hann window

Rectangular window

Flattop window

Time domain Frequency domain
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Dependency: Window Type

Hann window

Rectangular window

Flattop window

Estimated frequency (Hz)

Lo
ss

Lo
ss

Lo
ss

Loss landscape over estimates for a given target 

1000
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Dependency: Window Size

𝑁 ൌ  2048
𝑁 ൌ 512
𝑁 ൌ 8192
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Dependency: Window Size

𝑁 ൌ  2048
𝑁 ൌ 512
𝑁 ൌ 8192

Estimated frequency (Hz)

Lo
ss

Lo
ss

Lo
ss

Loss landscape over estimates for a given target 

1000
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Dependency: Magnitude Compression

None

Decibels

Log(1+value)
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Dependency: Magnitude Compression

Estimated frequency (Hz)

Lo
ss

Lo
ss

Lo
ss

Loss landscape over estimates for a given target 

1000

None

Decibels

Log(1+value)
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Experiments

Estimated frequency (Hz)

Lo
ss

 MSS loss with standard settings (WH, S4, C4, D1)

1000
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Experiments

Estimated frequency (Hz)

Lo
ss

 MSS loss with standard settings (WH, S4, C4, D1)
 Modified Hann MSS (WH, S5, C4, D2)

1000
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Experiments

Estimated frequency (Hz)

Lo
ss

 MSS loss with standard settings (WH, S4, C4, D1)
 Modified Hann MSS (WH, S5, C4, D2)
 Smooth MSS (WF, S5, C2, D2)

1000

© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
52

Experiments

GRAConfiguration
300 ct.30 ct.3 ct.0.3 ct.Step Size
0.7750.5730.5290.523Standard MSS
0.9230.7080.6350.613Modified Hann MSS
0.8600.9520.9930.999Smooth MSS

Estimated frequency (Hz)

Lo
ss

GRA (Gradient-Sign Ranking Accuracy)
 Measures how often the loss gradient 

points in the correct direction.
 Step size distinguishes local gradient 

behavior from global trend.

1000
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Overview

 Multi-Scale Spectral Loss
Knowledge Source: Signal Representations

 Hierarchical Classification Loss
Knowledge Source: Musical Hierarchies

 Differentiable Alignment Loss
Knowledge Source: Temporal Coherence 

Simon Schwär

Michael Krause
Johannes Zeitler

Literature
 Silla, Freitas: A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22(1-29: 

31–72, 2011.
 Wehrmann, Cerri, Barros: Hierarchical multi-label classification networks. Proc. ICML, 2018.
 Krause, Müller: Hierarchical Classification for Singing Activity, Gender, and Type in Complex Music Recordings. Proc. ICASSP, 2022.
 Krause, Müller: Hierarchical Classification for Instrument Activity Detection in Orchestral Music Recordings. IEEE/ACM Transactions on

Audio, Speech, and Language Processing, 31: 2567–2578, 2023.
 Weiß, Arifi-Müller, Krause, Zalkow, Klauk, Kleinertz, Müller: Wagner Ring Dataset: A Complex Opera Scenario for Music Processing and 

Computational Musicology. Transaction of the International Society for Music Information Retrieval (TISMIR), 6(1): 135–149, 2023.
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Wagner Ring Dataset

 Tetralogy (four operas)
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Wagner Ring Dataset

 Tetralogy (four operas)
 11 Acts
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Wagner Ring Dataset

 Tetralogy (four operas)
 11 Acts
 21,939 measures
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Wagner Ring Dataset
Raw Data

 Symbolic score:
 Piano reduction
 822 pages
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Wagner Ring Dataset
Raw Data

 Symbolic score:
 Piano reduction
 822 pages

 Audio recordings:
 16 performances
 232 hours
 3 performances in 

Public Domain (EU)
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Wagner Ring Dataset
Annotations

 Measure positions

Time (measures)

Time (seconds)
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Wagner Ring Dataset
Annotations

 Measure positions
 Note events
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Wagner Ring Dataset
Annotations

 Measure positions
 Note events
 Singing regions
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Wagner Ring Dataset
Annotations

 Measure positions
 Note events
 Singing regions
 Time signatures
 Key signatures
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PhD Thesis by Michael Krause (2023)
Activity Detection for Sound Events in Orchestral Music Recordings

Singing Voice 
Detection

Leitmotif 
Detection

Instrument
Detection
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Singing activity

Hierarchical Classification
Singing Voice Detection

Levels

Activity
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Singing activity

Male Female

Hierarchical Classification
Singing Voice Detection

Levels

Activity

Gender
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Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano

Hierarchical Classification
Singing Voice Detection

Levels

Activity

Gender

Voice type
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Hierarchical Strategies for Activity Detection

 Strategy A: Independent Decisions
 Strategy B: Bottom-Up Aggregation
 Strategy C: Top-Down Divide-and-Conquer
 Strategy D: Joint Classification
 Strategy Dα,β: Joint Classification with Consistency Losses
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Hierarchical Strategies for Activity Detection
Strategy A: Independent Decisions

 Train and evaluate separate models 
for each hierarchy level

 Activity classifier

 Gender classifier

 Voice type classifier

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy A: Independent Decisions

 Train and evaluate separate models 
for each hierarchy level

 Activity classifier

 Gender classifier

 Voice type classifier

 Outputs may be inconsistent

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano

© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
70

Hierarchical Strategies for Activity Detection
Strategy B: Bottom-Up Aggregation

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano

 Train and evaluate a single model for 
the lowest hierarchy level

 Voice type classifier

 Aggregate results from lower levels

 Consistency is trivially fulfilled

 May cause poor predictions on upper 
levels due to error propagation
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Hierarchical Strategies for Activity Detection
Strategy D: Joint Classification

 Train and evaluate a single model for 
all classes

→ Multi-task model

 Need additional loss terms to 
promote consistent predictions

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

 Notation:
 c: a class
 pc: probability of cSinging activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

 Notation:
 c: a class
 pc: probability of c
 c↓: child classes of c

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

 Notation:
 c: a class
 pc: probability of c
 c↓: child classes of c

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano

 For bottom-up consistency, minimize

pc should be at least as high as any pc'

→    penalty for every pc' >  pc
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

 Notation:
 c: a class
 pc: probability of c
 c↓: child classes of c

Singing activity

Male Female

Bass Baritone Tenor Alto Mezzo Soprano

 For top-down consistency, minimize

pc should not be above largest pc' 
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Hierarchical Strategies for Activity Detection
Strategy Dα,β : Joint Classification with Consistency Losses

All classes

Classes at level h

Number of levels

Children of c

Probability for c

Notation
Bottom-up loss term:

Top-down loss term:

Joint loss term:

© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
78

Results: Female Singing

 Strategy A (Independent Decisions) yields good but inconsistent results

Frames predicted as c

Frames predicted as 
child of c

Consistency

ConsistencyDetection results (frame-wise F-measure)
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Results: Female Singing

 Strategy A (Independent Decisions) yields good but inconsistent results
 Strategy B (Bottom-Up Aggregation) gives worse but consistent results

Frames predicted as c

Frames predicted as 
child of c

Consistency

ConsistencyDetection results (frame-wise F-measure)
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Results: Female Singing

 Strategy A (Independent Decisions) yields good but inconsistent results
 Strategy B (Bottom-Up Aggregation) gives worse but consistent results
 Strategy Dα,β (Joint with Consistency Losses) provides good trade-off

Frames predicted as c

Frames predicted as 
child of c

Consistency

ConsistencyDetection results (frame-wise F-measure)
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Scenario: Hierarchical Instrument Classification

 Musical instruments can naturally be arranged into hierarchies

Instrument activity

Woodwind

Flute Oboe Bassoon

Brass Timpani Vocals Strings

Clarinet French Horn Trumpet Female Male Violin Viola Cello Contrabass

 Instrument-level annotations hard to obtain
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Overview

 Multi-Scale Spectral Loss
Knowledge Source: Signal Representations

 Hierarchical Classification Loss
Knowledge Source: Musical Hierarchies

 Differentiable Alignment Loss
Knowledge Source: Temporal Coherence 

Simon Schwär

Michael Krause
Johannes Zeitler

Literature
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 Zeitler, Deniffel, Krause, Müller: Stabilizing Training with Soft Dynamic Time Warping: A Case Study for Pitch Class Estimation with Weakly 
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 Zeitler, Krause, Müller: Soft Dynamic Time Warping with Variable Step Weights. Proc. ICASSP, 2024.

© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
83

Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (seconds)

Time (seconds)

Karajan
(Orchester)

Gould
(Piano)
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)
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Time–chroma representations
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

Karajan
(Orchester)

Gould
(Piano)

C
hr
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Time (indices)

Time–chroma representations

E♭

E♭

Karajan
(Orchester)

Gould
(Piano)

C
hr

om
a

C
hr

om
a

© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
88

Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)
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Cost matrix
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Ti
m

e 
(in

di
ce

s)
Ka

ra
ja

n

Gould

Cost-minimizing 
warping path
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Motivation: Audio-Audio Alignment
Beethoven’s Fifth

Time (indices)

Time (indices)

Karajan
(Orchester)

Gould
(Piano)

Cost-minimizing 
warping path

→ Strong alignment
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Feature Learning

Strong alignment

Input

Ouput

Targets

 Task: Learn audio features using a neural network

 Loss: Binary cross-entropy 
 framewise loss
 requires strongly aligned targets
 hard to obtain

Neural Network
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Feature Learning

Weak alignment

Input

Ouput

Targets

 Task: Learn audio features using a neural network

 Loss: Binary cross-entropy 
 framewise loss
 requires strongly aligned targets
 hard to obtain

 Alignment as part of loss function
 requires only weakly aligned targets
 needs to be differentiable

 Problem: DTW is not differentiable
→ Soft DTW

?

Neural Network
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Dynamic Time Warping (DTW)

Sequence X

Sequence Y

x9x8x7x6x5x4x3x2x1

y7y6y5y4y3y2y1

Alignment

1 2 3 4 5 6 7
1
2
3
4
5
6
7
8
9

Sequence Y

Se
qu

en
ce

X

Alignment matrix

Set of all possible alignment matrices

=  Feature space
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Dynamic Time Warping (DTW)

=  Feature space

Cost measure:

Cost matrix:

Cost of alignment:

DTW cost:

with

Optimal alignment:

Alignment matrix

Set of all possible alignment matrices



© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
97

Dynamic Time Warping (DTW)

DTW cost:

 Efficient computation via Bellman’s recursion in O(NM)

 Problem: DTW(C) is not differentiable with regard to C

 Idea: Replace min-function by a smooth version

for set                 and temperature parameter 

for n>1 and m>1 and suitable initialization.  
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Soft Dynamic Time Warping (SDTW)

SDTW cost:

 Efficient computation via Bellman’s recursion in O(NM) still works:

 Limit case:

 Questions:
‒ How does the gradient look like?
‒ Can it be computed efficiently?
‒ How does SDTW generalize the alignment concept?

for n>1 and m>1 and suitable initialization.  

 SDTW(C) is differentiable with regard to C
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Soft Dynamic Time Warping (SDTW)

SDTW cost:

 Define              as the following “probability” distribution over            : 

for

 The expected alignment with respect to             is given by:

 The gradient is given by: 

Soft-DTW
Cuturi, Blondel: Soft-DTW: A 
Differentiable Loss Function
for Time-Series. ICML, 2017

 The gradient can be computed efficiently in  O(NM) via a recursive algorithm.
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Soft Dynamic Time Warping (SDTW)

Se
qu

en
ce

Y

Sequence X

Expected alignment :

Cost matrix C

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 
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Soft Dynamic Time Warping (SDTW)

Se
qu

en
ce

Y

Sequence X

Expected alignment :

Cost matrix C

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

Optimal alignment A*
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Soft Dynamic Time Warping (SDTW)

Se
qu

en
ce

Y

Sequence X

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸ఊ 𝐶 with 𝛾 = 0 ( = A* )
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸ఊ 𝐶 with 𝛾 = 0.1

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸ఊ 𝐶 with 𝛾 = 1

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸ఊ 𝐶 with 𝛾 = 10

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)

Expected alignment :

 Can be interpreted as a smoothed version of an alignment
 Degree of smoothing depends on temperature parameter 𝛾 

𝐸ఊ 𝐶 with 𝛾 = 100

Se
qu

en
ce

Y

Sequence X
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Soft Dynamic Time Warping (SDTW)
Conclusions

 Direct generalization of DTW (replacing min by smooth variant)

 Gradient is given by expected alignment

 Fast forward algorithm: O(NM)

 Fast gradient computation: O(NM)

 SDTW yields a (typically) poor lower bound for DTW

 Can be used as loss function to learn from weakly aligned sequences  

© AudioLabs, 2025
Meinard Müller

Loss Functions Matter
108

Soft Dynamic Time Warping (SDTW)
Stabilizing Training

 Standard SDTW often unstable
 Unstable training in early stages
 Degenerate output alignment 

 Hyperparameter adjustment
 High temperature to smooth alignments
 Temperature annealing 

 Diagonal prior

 Modified step size condition

Predicted sequence (frames)

Ta
rg

et
 s

eq
. (

fr.
)

SDTW alignment
Reference alignment

Predicted sequence (frames)

Ta
rg

et
 s

eq
. (

fr.
)

Predicted sequence (frames)

Ta
rg

et
 s

eq
. (

fr.
)
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Soft Dynamic Time Warping (SDTW)
Representation Learning

 Symmetric application
 Learn representation of both sequences
 Needs a contrastive loss term

 Assymmetric application 
 Use fixed (e.g., binary) encoding of target
 Learn representation of only one sequences
 No contrastive loss term need

 Simulation of CTC-loss using SDTW possible 

 Many DTW variants also possible for SDTW
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Conclusions

 Multi-Scale Spectral Loss
Knowledge Source: Signal Representations

 Hierarchical Classification Loss
Knowledge Source: Musical Hierarchies

 Differentiable Alignment Loss
Knowledge Source: Temporal Coherence 

Simon Schwär

Michael Krause
Johannes Zeitler
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Conclusions

Müller, Zeitler: 2025 ISMIR Tutorial
Differentiable Alignment Techniques for Music 
Processing: Techniques and Applications

 Multi-Scale Spectral Loss
Knowledge Source: Signal Representations

 Hierarchical Classification Loss
Knowledge Source: Musical Hierarchies

 Differentiable Alignment Loss
Knowledge Source: Temporal Coherence 

Simon Schwär

Michael Krause
Johannes Zeitler


