

Learning with Music Signals: **Technology Meets Education**

Meinard Müller

International Audio Laboratories Erlangen meinard.mueller@audiolabs-erlangen.de

Visualisierungskolloquium

Stuttgart, 24. Januar 2025

Meinard Müller

Senior Researcher (2007-2012)

Former President of the International Society for Music Information Retrieval (MIR)

ISMIR

IEEE Fellow for contributions to Music Signal Processing

Learning with Music Signals: Technology Meets Education

Meinard Müller: Research Group

- Ben Maman
- Simon Schwär
- Johannes Zeitler
- Peter Meier Sebastian Strahl
- Illi Berendes
- Ching-Yu Chiu (Sunny)
- Vlora Arifi-Müller
- Stefan Balke
- Christof Weiß
- Sebastian Rosenzweig Frank Zalkow
- Christian Dittmar
- Stefan Balke
- Jonathan Driedger
- Thomas Prätzlich

Learning with Music Signals: Technology Meets Education

International Audio Laboratories Erlangen

Fraunhofer

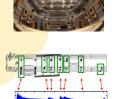
- Fraunhofer Institute for Integrated Circuits IIS Largest Fraunhofer
- institute with ≈ 1000 members
- Applied research for sensor, audio, and media technology

Learning with Music Signals Technology Meets Education

- Friedrich-Alexander Universität Erlangen-Nürnberg (FAU)
- One of Germany's largest universities with ≈ 40,000 students
- Strong Technical Faculty

3D Audio

International Audio Laboratories Erlangen

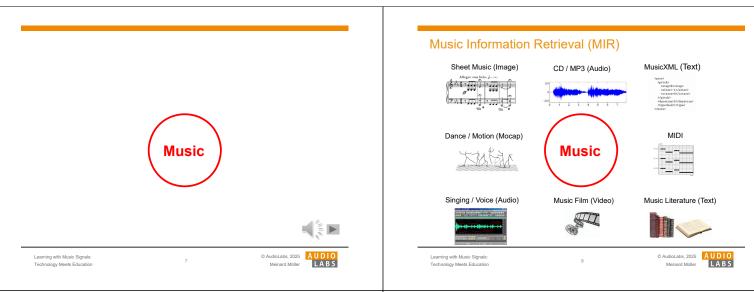


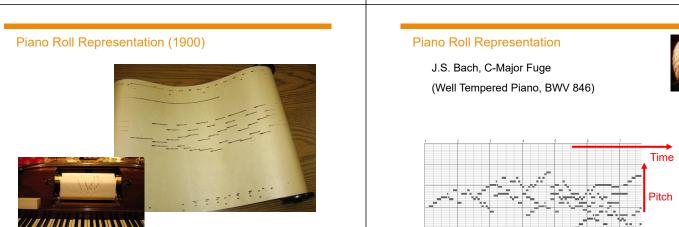
International Audio Laboratories Erlangen

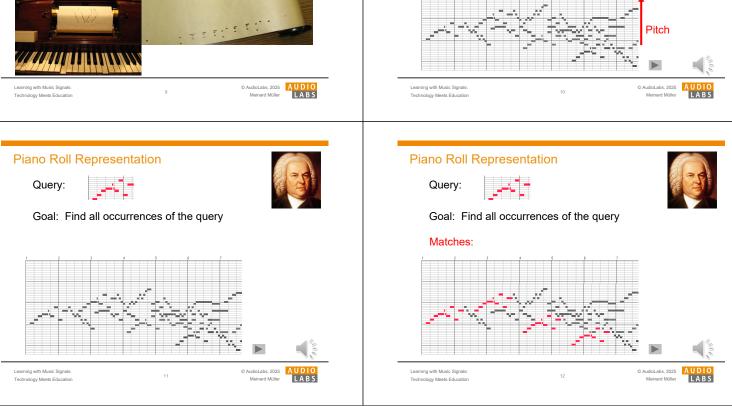
Audio

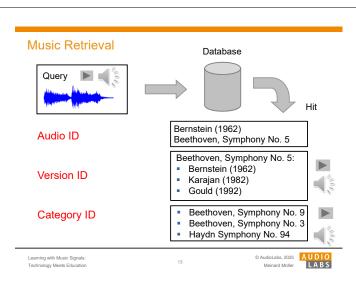
Music Processing

Internet of Things

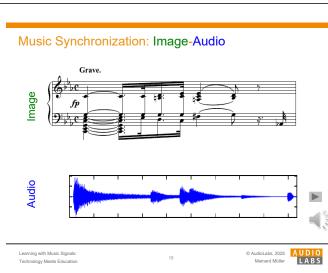

Learning with Music Signals Technology Meets Educatio

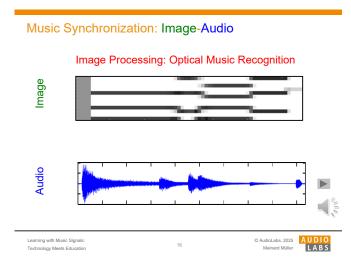

Psychoacoustics

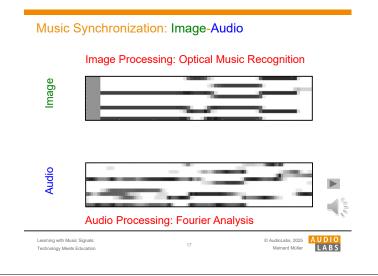


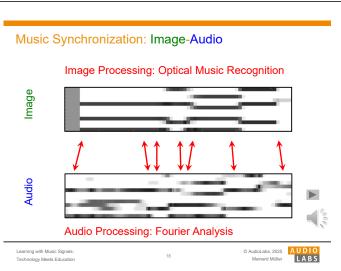

Learning with Music Signals: Technology Meets Education

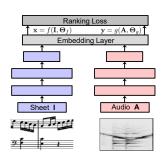
© AudioLabs, 2025 Meinard Müller LABS









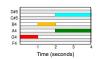


Music Synchronization: Image-Audio

- Deep learning
- Embedding techniques
- Weak annotations
- Loss functions

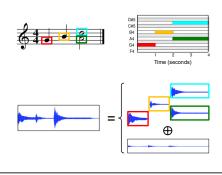
Learning with Music Signals: Technology Meets Education

Score-Informed Audio Decomposition

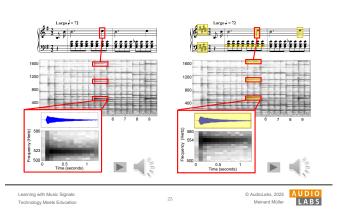


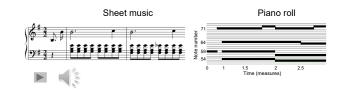
Learning with Music Signals:

Score-Informed Audio Decomposition

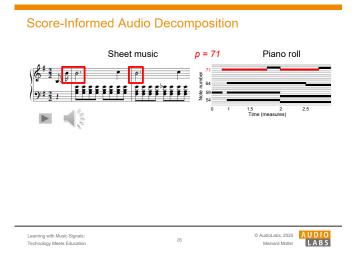


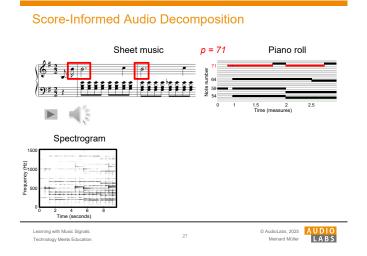
Learning with Music Signals: Technology Meets Education

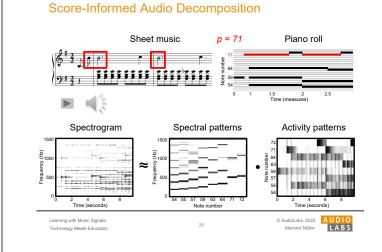

Score-Informed Audio Decomposition

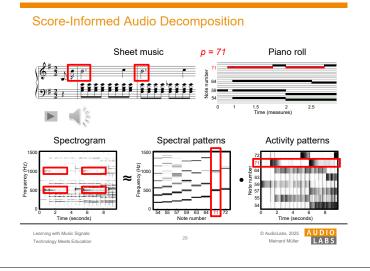

Learning with Music Signals

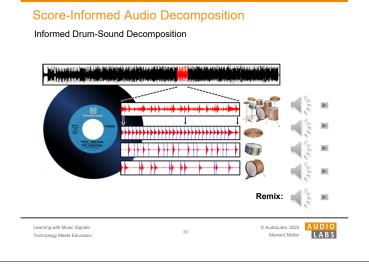
Score-Informed Audio Decomposition

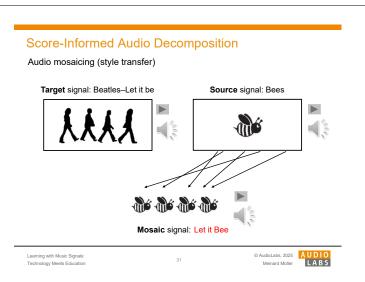



Score-Informed Audio Decomposition



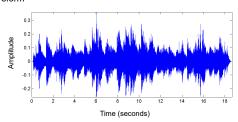



Sheet music p = 59 Piano roll The property of the property of



Why is Music Processing Challenging?

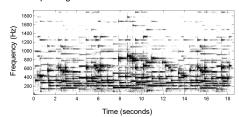
Example: Chopin, Mazurka Op. 63 No. 3


Learning with Music Signals

Why is Music Processing Challenging?

Example: Chopin, Mazurka Op. 63 No. 3

Waveform


Learning with Music Signals: Technology Meets Education

Why is Music Processing Challenging?

Example: Chopin, Mazurka Op. 63 No. 3

Waveform / Spectrogram

Learning with Music Signals

Why is Music Processing Challenging?

Example: Chopin, Mazurka Op. 63 No. 3

- Waveform / Spectrogram
- Performance
 - Tempo
 - Dynamics
 - Note deviations
 - Sustain pedal

Polyphony

Accompaniment

Main Melody Additional melody line

© AudioLabs, 2025
Meinard Müller

AUDIO
LABS

Source Separation

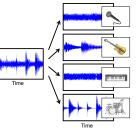
- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"

Learning with Music Signals: Technology Meets Education

© AudioLabs, 2025
Meinard Müller

A U D I O
L A B S

Source Separation


- Decomposition of audio stream into different sound sources
- Central task in digital signal processing
- "Cocktail party effect"
- Several input signals
- Sources are assumed to be statistically independent

Learning with Music Signals: Technology Meets Education

Source Separation (Music)

- Main melody, accompaniment, drum track
- Instrumental voices
- Individual note events
- Only mono or stereo
- Sources are often highly dependent

Learning with Music Signals:

Al-Based Source Separation

- SP: Using traditional signal processing
- AI: Using data-driven approach

Learning with Music Signals: Technology Meets Education

Al-Based Source Separation

- Yigitcan Özer
- PhD student in engineering
- Pianist

Learning with Music Signals Technology Meets Education

Al-Based Source Separation

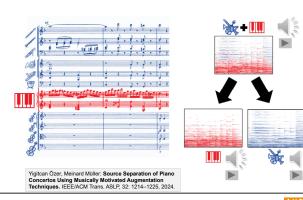
- Yigitcan Özer
- PhD student in engineering
- Pianist

Only Piano!

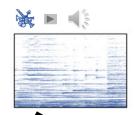
Where is the orchestra?

AI-Based Source Separation

Yigitcan Özer, Meinard Müller: Source Separation of Piano Concertos Using Musically Motivated Augmentation Techniques. IEEE/ACM Trans. ASLP, 32: 1214–1225, 2024.


AI-Based Source Separation

Yigitcan Özer, Meinard Müller: Source Separation of Piano Concertos Using Musically Motivated Augmentation Techniques. IEEE/ACM Trans. ASLP, 32: 1214–1225, 2024.


Al-Based Source Separation

Al-Based Source Separation

Accompaniment Creation

Lonely pianist plays solo piano part

Learning with Music Signals Technology Meets Education

Accompaniment Creation

Our Vision

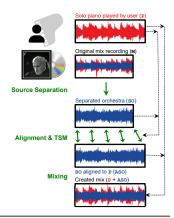
Learning with Music Signals: Technology Meets Education

- Lonely pianist plays solo piano part
- Select full mix recording of concerto

Accompaniment Creation

Our Vision

- Lonely pianist plays solo piano part
- Select full mix recording of concerto
- Isolate orchestra track

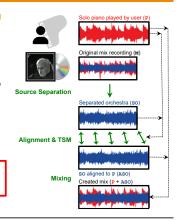

Learning with Music Signals: Technology Meets Education

Accompaniment Creation

Our Vision

- Lonely pianist plays solo piano part
- Select full mix recording of concerto
- Isolate orchestra track
- Align to the solo performance
- Create own coherent mix

Learning with Music Signals:



Accompaniment Creation

Our Vision

- Lonely pianist plays solo piano part
- Select full mix recording of concerto
- Isolate orchestra track
- Align to the solo performance
- Create own coherent mix

Make lonely pianist happy with "Berliner Philharmoniker"

Learning with Music Signals: Technology Meets Education

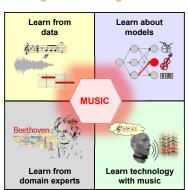
Accompaniment Creation

Yiğitcan Özer, Simon Schwär, Meinard Müller: **Piano Concerto Accompaniment Creation**. In Late-Breaking Demos of the International Society for Music Information Retrieval Conference (ISMIR), 2024.

Learning with Music Signals Technology Meets Education

Accompaniment Creation

Yiğitcan Özer, Simon Schwär, Meinard Müller: Plano Concerto Accompaniment Creation. In Late-Breaking Demos of the International Society for Music Information Retrieval Conference (ISMIR), 2024.


Learning with Music Signals: Technology Meets Education

AI-Based Source Separation

- Understanding modern machine learning techniques
- Critical questioning of artificial intelligence (AI) concepts
- Developing explainable AI models
- Educating next generation of scientists

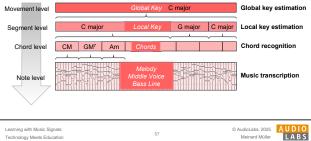
Learning with Music Signals: Technology Meets Education

- Machine learning for music signal processing
- Interpretable models and knowledge integration
- Music understanding and applications
- Interactive learning in engineering through music

Computational Musicology

- Cooperation:
 - Rainer Kleinertz (Saarbrücken)
 - Stephanie Klauk (Saarbrücken)
 - Christof Weiß (Würzburg)
- Objectives
 - Harmony-based structural analysis
 - Beethoven Sonatas & Wagner's Ring
 - Interdisciplinary dialogue
- Since 2014: DFG-funded project

Learning with Music Signals:

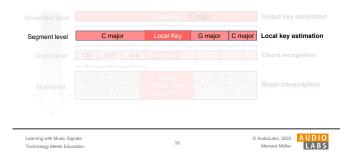


Computational Musicology: Harmony Analysis

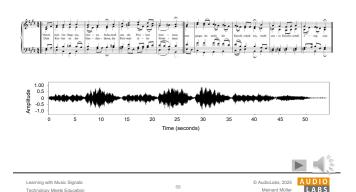
Different concepts

Learning with Music Signals: Technology Meets Education

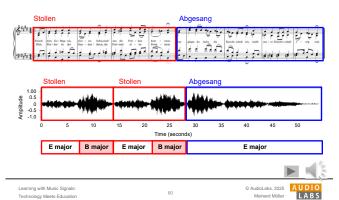
Different temporal levels



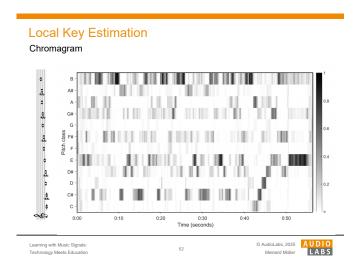
Learning with Music Signals: Technology Meets Education

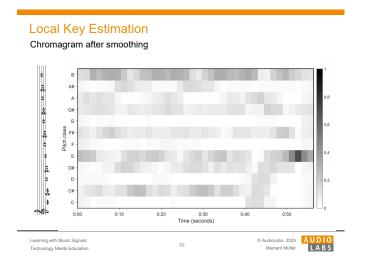

Computational Musicology: Harmony Analysis

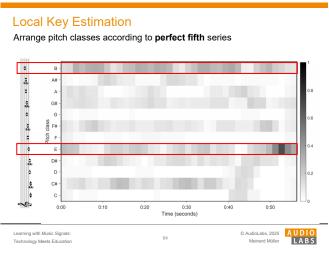
- Different concepts
- Different temporal levels

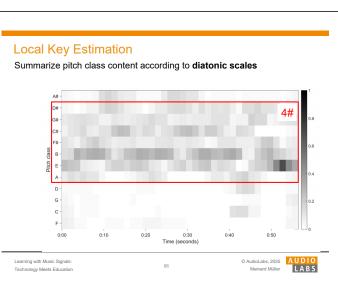

Local Key Estimation

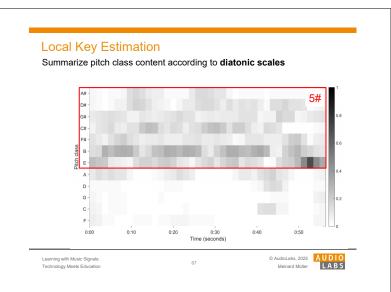
Example: J.S. Bach, Choral "Durch Dein Gefängnis" (Johannespassion)

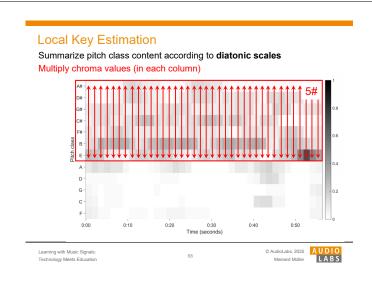


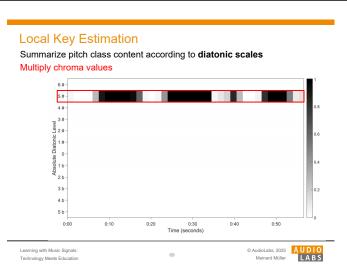

Local Key Estimation

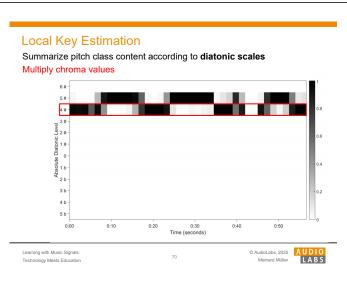

Example: J.S. Bach, Choral "Durch Dein Gefängnis" (Johannespassion)

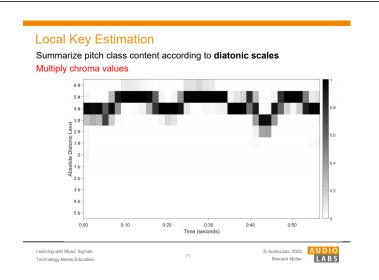

Local Key Estimation Spectrogram 0:30 Time (seconds) © AudioLabs, 2025 Meinard Müller AUDIO LABS

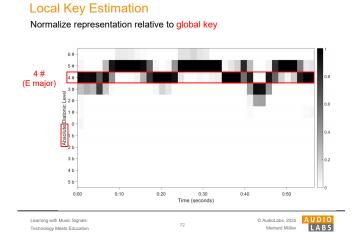


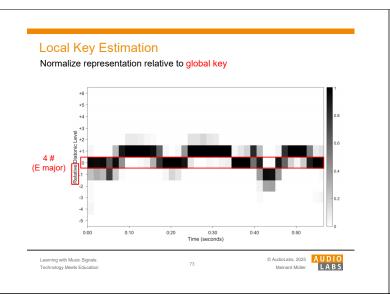


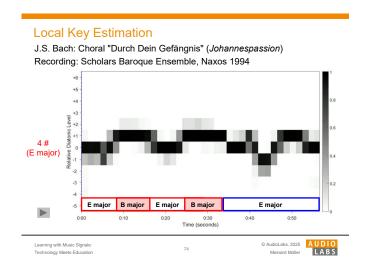


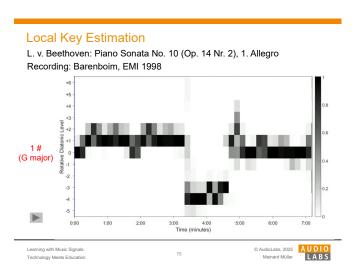


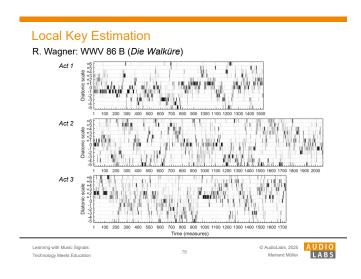


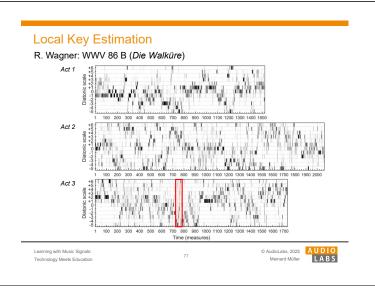


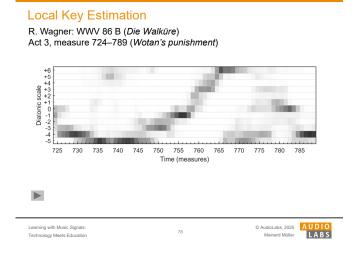


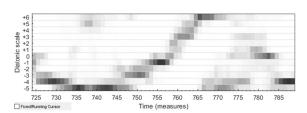












Local Key Estimation

R. Wagner: WWV 86 B (*Die Walküre*) Act 3, measure 724–789 (*Wotan's punishment*)

Computational Ethnomusicology: Traditional Georgian Vocal Music

- Interdisciplinary research project
 - Prof. Dr. Frank Scherbaum (Potsdam)
 - Dr. Nana Mzhavanadze (Tbilisi)
 - Sebastian Rosenzweig (FAU)
- Objective: Tonal analysis

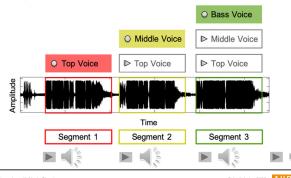
Learning with Music Signals:

2018 – 2022: DFG-funded project

Traditional Georgian Vocal Music

Example: Erkomaishvili corpus

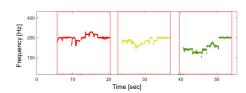
- Collection of traditional three-voice Georgian songs
- Performed by the former Georgian master chanter Artem Erkomaishvili (1887-1967)
- Recordings of 100 songs using tape recorders (1966)

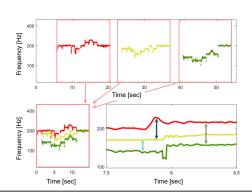

"Original masterpieces of Georgian musical thinking." (Shugliashvili, 2014)

Learning with Music Signals: Technology Meets Education

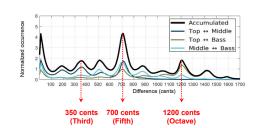
Traditional Georgian Vocal Music

Example: Erkomaishvili corpus


Learning with Music Signals


Traditional Georgian Vocal Music

Traditional Georgian Vocal Music



Traditional Georgian Vocal Music

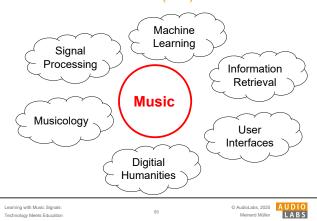
Traditional Georgian Vocal Music

- Peak at 350 cents (between minor and major third)
- Non-western temperament

Learning with Music Signals:

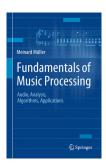
Traditional Georgian Vocal Music

- Recordings from field expedition in 2016
- 216 performances
- Multitrack audio + video Room, HSM, LRX
- Total duration: 6 h



Room Microphone

Learning with Music Signals: Technology Meets Education


Music Information Retrieval (MIR)

Learning with Music Signals

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

Fundamentals of Music Processing (FMP)

Meinard Müller Fundamentals of Music Processing Audio, Analysis, Algorithms, Applications Springer, 2015

Accompanying website: www.music-processing.de

2nd edition Meinard Müller Fundamentals of Music Processing Using Python and Jupyter Notebooks Springer, 2021

FMP Notebooks: Education & Research

https://www.audiolabs-erlangen.de/FMP

References (FMP Notebooks)

- Meinard Müller: Fundamentals of Music Processing Using Python and Jupyter Notebooks. 2nd Edition, Springer, 2021. om/gp/book/9783030698072
- Meinard Müller and Frank Zalkow: libfmp: A Python Package for Fundamentals of Music Processing. Journal of Open Source Software (JOSS), 6(63): 1–5, 2021.
- Meinard Müller: An Educational Guide Through the FMP Notebooks for Teaching and Learning Fundamentals of Music Processing. Signals, 2(2): 245–285, 2021. https://www.mdpi.com/2624-6120/2/2/18
- Meinard Müller and Frank Zalkow: FMP Notebooks: Educational Material for Teaching and Learning Fundamentals of Music Processing. Proc. International Society for Music Information Retrieval Conference (ISMIR): 573–580, 2019.
- Meinard Müller, Brian McFee, and Katherine Kinnaird: Interactive Learning of Signal Processing Through Music: Making Fourier Analysis Concrete for Students. IEEE Signal Processing Magazine, 38(3): 73–84, 2021.

Learning with Music Signals: Technology Meets Education

Resources (Group Meinard Müller)

FMP Notebooks:

https://www.audiolabs-erlangen.de/FMP

· libfmp:

https://github.com/meinardmueller/libfmp

synctoolbox:

https://github.com/meinardmueller/synctoolbox

https://github.com/meinardmueller/libtsm

Preparation Course Python (PCP) Notebooks: https://www.audiolabs-erlangen.de/resources/MIR/PCP/PCP.html https://github.com/meinardmueller/PCP

