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Abstract—Fundamental frequency (F0) estimation is a critical
task in audio, speech, and music processing applications, such as
speech analysis and melody extraction. F0 estimation algorithms
generally fall into two paradigms: classical signal processing-based
methods and neural network-based approaches. Classical meth-
ods, like YIN and SWIPE, rely on explicit signal models, offer-
ing interpretability and computational efficiency, but their non-
differentiable components hinder integration into deep learning
pipelines. Neural network-based methods, such as CREPE, are
fully differentiable and flexible but often lack interpretability and
require substantial computational resources. In this paper, we pro-
pose differentiable variants of two classical algorithms, dYIN and
dSWIPE, which combine the strengths of both paradigms. These
variants enable gradient-based optimization while preserving the
efficiency and interpretability of the original methods. Through
several case studies, we demonstrate their potential: First, we
use gradient descent to reverse-engineer audio signals, showing
that dYIN and dSWIPE produce smoother gradients compared
to CREPE. Second, we design a two-stage vocal melody extraction
pipeline that integrates music source separation with a differen-
tiable F0 estimator, providing an interpretable intermediate rep-
resentation. Finally, we optimize dSWIPE’s spectral templates for
timbre-specific F0 estimation on violin recordings, demonstrating
its enhanced adaptability over SWIPE. These case studies highlight
that dYIN and dSWIPE successfully combine the flexibility of neu-
ral network-based methods with the interpretability and efficiency
of classical algorithms, making them valuable tools for building
end-to-end trainable and transparent systems.

Index Terms—Differentiable algorithms, fundamental
frequency estimation, music processing.

I. INTRODUCTION

THE accurate estimation of fundamental frequency (F0) is
a critical task in speech and music processing, commonly

required in applications such as melody transcription, harmonic
analysis, and speech synthesis. Defined as the lowest frequency
of a periodic waveform, the F0 typically corresponds to the
perceived pitch. Although there are cases where F0 and pitch
differ [1], the terms are often used interchangeably.
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Algorithms for F0 estimation generally belong to one of two
main paradigms: classical signal processing [2], [3], [4], [5],
[6], [7] or methods based on neural networks (NN) [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17]. Prominent exam-
ples of classical algorithms include YIN [4], which uses the
autocorrelation method, and pYIN [7], a probabilistic extension
of YIN that incorporates a hidden Markov model to determine
the most likely pitch sequence. Another example is SWIPE [5],
which relies on spectral comparison with F0-specific templates
based on the sawtooth waveform. Among NN-based methods,
CREPE [8] is widely known. It uses a convolutional architecture
to process raw audio inputs and directly generates probabilities
for a set of F0 candidates, though it requires annotated data for
supervised training. Self-supervised approaches like SPICE [11]
and PESTO [15] reduce the need for labeled data by using
artificially pitch-shifted versions of the input and training models
to predict these relative pitches rather than absolute pitches.

The classical algorithms are built on explicit signal models, of-
fering interpretability, predictable behavior, and computational
efficiency, which makes them ideal for applications with limited
resources. On the other hand, NNs are often computationally
expensive and behave like black-box models, making it difficult
for users to predict the model’s output when presented with
inputs dissimilar to the training data. Despite this, NNs are
widely favored for F0 estimation due to their superior perfor-
mance. Also, they integrate easily into deep learning pipelines.
For instance, CREPE [8] has been used to create perceptual
loss functions, e.g., for training an autoencoder that includes
an F0 estimate as part of its latent representation [18] or in the
context of singing voice conversion [19]. In contrast, classical
signal-processing algorithms often include non-differentiable
components, limiting their compatibility with modern deep
learning frameworks.

Only little work has been done to combine the two paradigms.
For example, the hybrid approach FusedF0 [16] fuses signal pro-
cessing and NN-based features extracted from raw waveforms,
achieving the performance of NN-based methods while retaining
the noise robustness of signal processing approaches. However,
FusedF0 is incompatible with deep learning pipelines due to
its computationally expensive extraction of signal processing
features [16] and because these features are not differentiable
w.r.t. the time-domain input.

With this work, we aim to further bridge the gap between the
two paradigms by transforming the classical F0 estimators YIN
and SWIPE into differentiable counterparts, dYIN and dSWIPE.
This approach combines the strengths of both paradigms. The
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differentiable F0 estimators preserve the interpretability and
efficiency of the original methods while enabling gradient-based
optimization and seamless end-to-end training of deep learn-
ing pipelines. To facilitate reproducibility and further research,
we provide our PyTorch [20] implementations of dYIN and
dSWIPE on GitHub.1

This article is structured as follows. In Section II, we introduce
differentiable variants of the classical F0 estimation algorithms
YIN and SWIPE. We detail the process of transforming them
into dYIN and dSWIPE, making them compatible with gradient-
based optimization while preserving their interpretability and
efficiency. Section III presents three case studies that highlight
the potential of these differentiable signal processing-based
algorithms. First, we use gradient descent to reverse-engineer
audio signals, generating user-specified F0 trajectories. This
demonstrates that the gradients backpropagated through dYIN
and dSWIPE are smoother and less noisy compared to those
from CREPE. Second, we design a two-stage melody extrac-
tion pipeline that combines a music source separation model
with a differentiable monophonic F0 estimator, offering an
interpretable intermediate representation in the form of a sepa-
rated melody line. Third, we optimize the spectral templates of
dSWIPE for timbre-specific F0 estimation on violin recordings,
demonstrating its enhanced adaptability compared to SWIPE.
Finally, we conclude the article in Section IV.

II. METHOD

In this section, we introduce our differentiable F0 estimators,
dYIN and dSWIPE, which build upon the classical YIN and
SWIPE algorithms. We first describe the modifications that make
these methods differentiable and compatible with integration
into deep learning pipelines. Next, we illustrate the model out-
puts and present different options for loss computation. Finally,
we summarize strategies for F0 selection from the probabilistic
model outputs and provide a quantitative performance compar-
ison with the original YIN and SWIPE algorithms.

A. dYIN

The YIN algorithm [4] operates in the time domain and is
based on the autocorrelation method. Conceptually, it aims to
find a time lag for which the signal’s autocorrelation function
exhibits a peak. We now briefly outline how the framewise
version of the original algorithm works and then describe our
modifications to obtain the differentiable version we refer to as
dYIN.

Let x be an audio signal with samples x(n) ∈ R for time
indices n ∈ Z. To perform F0 estimation, the signal is divided
intoM overlapping frames xm using a window of lengthN ∈ N

and a hop length of H ∈ N samples. For each frame, indexed by
m ∈ [0 : M − 1] := {0, 1, . . . ,M − 1}, YIN computes [4] the
cumulative mean normalized difference function (CMNDF) d′m
defined by

dm(τ) =

N−1∑
n=0

[xm(n)− xm(n+ τ)]2 , (1)

1https://github.com/groupmm/df0

d′m(τ) =

⎧⎨
⎩
1, if τ = 0,

dm(τ)
/[

(1/τ)
τ∑

j=1

dm(j)
]

else,
(2)

where xm is considered to be zero outside the inter-
val [0 : N − 1]. The CMNDF is computed for time lags
τ ∈ [0 : τmax] with τmax = �Fs/F0,min�, where Fs is the sam-
pling frequency and F0,min is a hyperparameter defining the
lowest detectable F0 (both in Hz). For all frames and time lags,
we assemble the values of the CMNDF as the entries of a matrix
D(t) ∈ R

(τmax+1)×M , which is illustrated in Fig. 1. YIN aims
to find the smallest time lag τ̂m for which d′m exhibits a local
minimum, corresponding to the period of xm. The F0 for that
frame is then estimated as ŷm = Fs/τ̂m. To select the time lag
τ̂m, the original YIN algorithm [4] includes the following steps:

1) YIN employs an absolute threshold and selects the small-
est time lag for which d′m exhibits a local minimum with a
value below that threshold, reducing subharmonic errors
compared to choosing the global minimum of d′m.

2) YIN applies parabolic interpolation around the selected
minimum and then uses the parabola’s minimum as esti-
mate τ̂m to better deal with cases where the period is not
an integer multiple of the sampling period.

3) YIN refines the initial F0 estimate by incorporating infor-
mation from neighboring frames. Specifically, it uses the
initial F0 estimates from adjacent frames to narrow the
search range for τ in the current frame. The refined esti-
mate is then obtained from a second pass of the algorithm
using the restricted search range.

Since YIN only returns a scalar F0 estimate per frame, it
implicitly formulates F0 estimation as a regression problem. For
gradient-based optimization, however, it can be advantageous to
reformulate regression problems as classification problems—a
strategy that proved to be effective for other tasks [21], [22]. For
the design of dYIN, we therefore reformulate F0 estimation as a
classification problem, where the model outputs for each frame
xm a probability vector ŷm ∈ [0, 1]K with K ∈ N. The vec-
tor’s elements ŷm(k) are interpreted as probabilities associated
with K predefined F0 classes. The F0 classes represent small,
non-overlapping frequency ranges and are referred to by their
center frequencies. We denote the vector of all center frequencies
by c(f) ∈ R

K . Following deep learning-based approaches to F0
estimation [8], [12], [13], [14] and motivated by the human per-
ception of pitch [23], we define the F0 classes on a logarithmic
frequency axis with center frequencies

c(f)(k) = F0,min · 2k·R/1200 (3)

for all k ∈ [0 : K − 1], where R is the distance between the
center frequencies of adjacent F0 classes, measured in cents. In
our experiments, we choose F0,min = 55.0Hz, K = 720, and
R = 10, resulting in the highest detectable F0 class c(f)(719) =
3499.73Hz. To obtain the probabilities ŷm, we use the CMNDF
d′m as a starting point. Note that d′m is differentiable w.r.t. all
samples xm(n). Essentially, we convert the time lag axis of the
CMNDF into a frequency axis. To this end, we first convert the
center frequencies of all F0 classes into time lags c(t) ∈ R

K via

c(t)(k) = Fs/c
(f)(k). (4)

https://github.com/groupmm/df0


2624 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. 33, 2025

Fig. 1. Visualization of the dYIN algorithm. The cumulative mean normalized difference function (CMNDF) is computed for each frame, with the vertical axis of
D(t) representing time lag and the horizontal axis representing time. The time lag axis is then converted into a frequency axis (D(f)), and framewise application of
the softmin function converts the values into probabilities, resulting in an F0 salience matrix ŶdYIN. If needed, F0 selection approaches can process the probabilistic
output into scalar F0 estimates.

We cannot directly evaluate the CMNDF at these time lags
because the CMNDF is only defined for integer time lags, but
c(t) also contains non-integer time lags. Therefore, for each of
the F0 classes, parabolic interpolation is used to derive a value
from d′m at the respective non-integer time lag. This step is
similar to the parabolic interpolation applied in the original YIN
algorithm, except that for dYIN we evaluate the CMNDF at fixed
time lags rather than finding the minimum of an interpolating
parabola. We denote the vector of interpolated CMNDF values
by d

(f)
m ∈ R

K , and we gather these vectors for all frames in a
matrix D(f) ∈ R

K×M . For an illustration of D(f), we refer to
Fig. 1. To obtain a probability vector ŷm, we apply the softmin
function

ŷm = softmin(d(f)
m ) =

exp(−d
(f)
m )∑K−1

k=0 exp(−d
(f)
m (k))

, (5)

which ensures that
∑K−1

k=0 ŷm(k) = 1. Stacking the vectors ŷm

of all frames, we obtain a matrix ŶdYIN ∈ [0, 1]K×M , which
describes F0 salience over time, see Fig. 1.

The original YIN algorithm includes two steps which we do
not incorporate into dYIN: absolute thresholding and estimate
refinement using a restricted search range. We omit these steps
to attain good gradient flow for dYIN. Both of these steps could
be incorporated by a masking operation that is applied after the
softmin function, setting to zero the probabilities for F0 classes
where the CMNDF exceeds the threshold or which are outside
the restricted search range. However, during backpropagation,
this would zero out the gradients w.r.t. the probabilities of
the masked F0 classes. Therefore, masking would cause an
information loss, limiting the effectiveness of gradient-based
optimization.

However, we must distinguish between training and evalua-
tion mode. Gradients are only required during training, and we
can thus change the behavior of the algorithm during evalua-
tion. In fact, we could apply YIN in its original form during
evaluation and only use dYIN for training or if the F0 salience
representation ŶdYIN is the desired output.

B. dSWIPE

The SWIPE algorithm [5] (Sawtooth Waveform Inspired Pitch
Estimator) operates in the frequency domain and identifies the
F0 by comparing the input signal to templates derived from the
spectrum of a sawtooth waveform. For each frame, the algorithm
compares the input signal to the F0-specific spectral templates
and selects the F0 corresponding to the template with the highest

similarity. In the following, we summarize how SWIPE2 works
and outline the modifications needed to develop its differentiable
variant, dSWIPE.

For an audio signalx, SWIPE computes a setX ofJ ∈ Nmag-
nitude spectrograms using varying window sizes to capture the
signal’s spectral content at multiple time–frequency resolutions.
Each spectrogram uses a hop size equal to half the window size,
minimizing computational cost and redundancy [5], but leading
to different temporal resolutions.

To allow for uniform handling, all spectrograms are resampled
to a common time and frequency axis. For simplicity, we use
linear interpolation to perform the resampling. The time axis is
specified by a frame rateFs/H , whereH is the target hop length
in samples. The frequency axis is constructed by uniformly
sampling the equivalent rectangular bandwidth (ERB) scale at
L ∈ N positions. The ERB scale, derived from psychoacoustics,
approximates the bandwidths of auditory filters in human hear-
ing [24], providing a perceptually meaningful representation of
frequencies. Resampling spectrograms to the ERB scale thus
allows the algorithm to implicitly weigh frequency bands ac-
cording to their perceptual importance [5], improving accuracy
and interpretability in pitch-related tasks. We summarize all
resampled spectrograms in a tensor XERB ∈ R

J×L×M . Both the
set X and the tensor XERB are illustrated in Fig. 2.

Furthermore, the magnitude of each spectrogram is com-
pressed using the square-root function, which enhances the
relative contribution of higher harmonics with lower amplitudes,
making them more prominent in the analysis [5]. This step en-
sures that subtle harmonic components, which might otherwise
be dominated by stronger frequencies, receive greater emphasis
during the comparison process.

In the next step, the resulting ERB-based spectrogram repre-
sentations are compared with the spectral templates. The set
of F0 classes is chosen in the same way as for dYIN, and
each class is represented by a spectral template. In SWIPE,
spectral templates are designed to match the harmonic structure
of signals from the respective F0 classes. Each template includes
positive cosine lobes at the fundamental frequency and its har-
monics, with negative lobes placed around them. A harmonically
decaying envelope emphasizes lower harmonics to align with
energy distributions of typical signals and to reduce subharmonic
errors [5]. The description of the templates is not yet complete,
but what we mentioned so far is visualized in Fig. 3(a) for the
F0 class 1000 Hz.

2In this article, the term SWIPE refers to the algorithm known as SWIPE’
in [5].
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Fig. 2. Visualization of the dSWIPE algorithm. Spectral representations are extracted from the audio signal (X ) and aligned on a common time and frequency
axis (XERB). These are then compared with predefined spectral templates for different F0 classes (T) to compute similarity scores (S). The similarity scores are
aggregated (Ssum) and normalized to produce an F0 salience matrix (ŶdSWIPE). Red is used to visualize negative values.

Fig. 3. Spectral templates for the F0 class 1000Hz. (a) Template including
all harmonics. (b) SWIPE template including the first and all prime harmonics.

To further improve accuracy, SWIPE uses only the first and
prime harmonics (e.g., 2×, 3×, 5×, 7× F0) instead of all
harmonics, see Fig. 3(b). This approach considerably reduces
the overlap between the spectrum of a given F0 and the templates
corresponding to its subharmonics (e.g., 1/2, 1/3, 1/4 F0)
because for each template at most one of the signal’s harmonics
is captured by a positive lobe. Therefore, excluding non-prime
harmonics reduces subharmonic errors [5]. The input signal’s
spectrum is compared to these templates, and the F0 correspond-
ing to the best-matching template is selected as the F0 estimate.

Formally, let T ∈ R
L×K be a matrix containing all the K

templates of length L as its columns, see Fig. 2 for an illus-
tration. Since the templates are designed for comparison with
ERB-based spectrograms, they are generated directly within the
ERB scale. Using T and the spectrograms XERB, we compute
an F0 similarity tensor S ∈ R

J×K×M . Each entry S(j, k,m)
represents the similarity between the mth frame of x and the
spectral template corresponding to the fundamental frequency
c(f)(k), computed using the jth window size. For all j ∈ [0 :
J − 1], k ∈ [0 : K − 1], and m ∈ [0 : M − 1], this similarity is
computed by

S(j, k,m) =
〈T( : , k),

√
XERB(j, : ,m) 〉

‖max(T( : , k), 0)‖ ·
∥∥∥√XERB(j, : ,m)

∥∥∥ . (6)

This metric, a modified version of cosine similarity, normalizes
the templates using the �2-norm of their positive components.

Normalizing with only the positive components ensures that the
similarity values approach one if the spectrum of a frame closely
matches the positive part of a template [5]. This property is useful
if the highest similarity is later used as a confidence metric,
helping to determine whether a frame is pitched or unpitched.
The colon is used to address all values in a dimension, and both
the max operator and the square root are applied element-wise.

We have not yet discussed the selection of window sizes
for computing the spectrograms in X . For each F0 class, an
optimal window size can be calculated that maximizes the
overlap between the main lobes of the spectrum at the harmonic
frequencies and the positive lobes of the template [5]. However,
instead of calculating a separate spectrogram for each F0 class,
Camacho and Harris [5] propose computing spectrograms only
for window sizes that are powers of 2 and linearly combining
the resulting similarities from these spectrograms [5]. This is
achieved by computing a weighted sum of the tensorS along the
window size dimension, with weights specific to each F0 class,
producing an aggregated matrix Ssum. For details on how the
combining weights are calculated, we refer to (19)–(21) in [5].

Finally, following the approach used in YIN, framewise
parabolic interpolation is applied around the maximum along the
frequency axis of Ssum. The peak position of the fitted parabola
is then taken as the F0 estimate, allowing for more precise
estimates if the true F0 is falling between the F0 class grid [5].

We now describe the modifications we make to obtain the
differentiable dSWIPE. First of all, we again reformulate F0
estimation as a classification problem for the same reasons men-
tioned in Section II-A. For SWIPE, this change is very simple
because with Ssum the algorithm already computes similarities
for the predefined set of F0 classes. To convert these similarities
into probabilities, we apply for each frame the softmax function
across the frequency axis, resulting in an F0 salience matrix
ŶdSWIPE ∈ [0, 1]K×M . Furthermore, we modify the calculation
of the similarity metric so that it is differentiable w.r.t. both
the ERB-based spectrograms and the templates. Instead of nor-
malizing the templates using the �2-norm of only their positive
components, we normalize them using the standard �2-norm,

S(j, k,m) =
〈T( : , k),

√
XERB(j, : ,m) 〉

‖T( : , k)‖ ·
∥∥∥√XERB(j, : ,m)

∥∥∥ . (7)

As a result of this modification, the similarities no longer reach
values as close to one as they previously did. However, this
has little impact on the method’s F0 estimation performance
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as observed in Section II-F. Since the similarities are now
differentiable w.r.t. the template matrix T, we can treat that
matrix as trainable rather than fixed, enabling it to be learned
using gradient descent.3 There are several ways to implement
learnable templates. We consider the following options:

1) Fully trainable template matrix (F): Each entry in T is
treated as an independent parameter, providing maximum
flexibility but requiring substantial training data for each
F0 class to achieve robust generalization.

2) Prototype-based templates (P): A single prototype is
learned, with the columns of T dynamically generated
in each iteration by stretching this prototype accordingly.
Linear interpolation is used to evaluate the prototype at the
required positions. Although this method offers less flexi-
bility than the first approach, it can achieve generalization
across F0 classes through parameter sharing.

3) Learned components (C): Specific elements of the original
template generation process, such as the cosine lobe or the
envelope decay parameter, can be learned. This enables us
to use gradient descent to find a data-optimal parameter
setting, eliminating the need for manual tuning as done
in [5].

In the following, we will refer to these options by using the
abbreviations written in parenthesis, e.g., dSWIPE-P for the
method that generates templates from a prototype.

C. Example

In Fig. 4, we present an example to illustrate and compare
the F0 salience representations produced by dYIN and dSWIPE
using an excerpt from the MIR-1K dataset [25], which con-
tains only singing voice. For context, the audio’s magnitude
spectrogram, CREPE’s output [8], and the dataset’s reference
annotations are also included. For all our experiments, we use
a PyTorch version of CREPE.4 To ensure consistency with the
other methods, CREPE’s final sigmoid activation was replaced
with a softmax function.

During voiced intervals, the spectrogram displays strong am-
plitudes at overtones, while neither dYIN nor dSWIPE produce
peaks at frequencies above the annotated F0. However, both
methods assign noticeable probabilities to subharmonics, re-
flecting some vulnerability to subharmonic errors. dYIN gen-
erates similar probabilities for the F0 and its subharmonics,
whereas dSWIPE assigns reduced probabilities to subharmon-
ics, highlighting improved robustness. In comparison, CREPE’s
output reveals low-level peaks both above and below the F0,
especially near octave shifts.

D. Loss Computation

Both dYIN and dSWIPE approach F0 estimation as a clas-
sification task, producing framewise F0 probabilities as out-
puts. This makes it straightforward to integrate them into deep

3Although gradient-based optimization is also feasible with the similarity
metric in (6), using a subgradient as for the rectified linear unit (ReLU), the lack
of proper normalization may result in learned templates with disproportionately
large negative values.

4[Online]. Available: https://github.com/gudgud96/torchcrepeV2

Fig. 4. Comparison of F0 salience representations for a singing voice excerpt
from the MIR-1K [25] dataset. (a) Spectrogram of the original audio signal.
F0 salience representation based on (b) dYIN, (c) dSWIPE, and (d) CREPE.
(e) Reference F0 annotations from the MIR-1 K dataset.

learning pipelines, where an F0 classification loss is calculated
and gradients can be backpropagated through the algorithms.
Framewise F0 annotations ym in Hz can be converted into target
vectors ym ∈ [0, 1]K in different ways. The simplest option is
to convert them into one-hot vectors, where the F0 class closest
to the annotated F0 gets assigned all probability mass. For all
frames with ym > 0, these vectors are defined by

ym(k) =

{
1, if k = 	log2(ym/F0,min) · 1200

R �,
0, else,

(8)

where 	 · � denotes the rounding operation. Alternatively, Gaus-
sian blurring can be applied across the frequency axis, providing
smoother targets and reducing the penalty for minor deviations
from the reference [26]. While [26] applies Gaussian blurring
after rounding to the nearest F0 class, we instead apply it directly
to the targets, bypassing the intermediate rounding step as in [8].

https://github.com/gudgud96/torchcrepeV2
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This approach ensures more accurate target representations. The
entries of the Gaussian-blurred target vector are then calculated
as

ym(k) = Zm · exp
(−(k ·R− 1200 · log2(ym/F0,min))

2

2σ2

)
,

(9)
where σ > 0 is the Gaussian’s standard deviation in cents,
and the normalizing factors Zm ∈ R are chosen so that∑K−1

k=0 ym(k) = 1 for all framesm. As loss function, we choose
categorical cross entropy,

L(ŷm,ym) = −
K−1∑
k=0

ym(k) · log(ŷm(k)), (10)

which is the standard choice for classification problems.

E. F0 Selection Approaches

As discussed in Section II-A, the main purpose of dYIN and
dSWIPE is to enable gradient backpropagation during train-
ing. For evaluation, where differentiability is not required, the
original algorithms YIN and SWIPE could be used instead.
Nonetheless, we provide a brief overview of common methods
for deriving scalar F0 estimates from salience representations
for evaluation purposes. We only describe framewise selection
approaches and do not consider post-processing methods such
as Viterbi decoding [7].

1) Argmax: This simplest option selects for each frame the
F0 class with the highest salience.

2) Parabolic interpolation: This option applies parabolic
interpolation to the salience representation, fitting for each
frame a parabola around the F0 class with highest proba-
bility. The abscissa of the parabola’s peak is then taken as
F0 estimate, following the procedure used in YIN [4] and
SWIPE [5].

3) Local weighted average: This method first identifies for
each frame the F0 class with the highest probability. Then,
the final F0 estimate is computed as a weighted average
of neighboring frequencies within a small window, using
their predicted probabilities as weights. For further details,
see [12].

In the following, we will quantitatively compare the perfor-
mance of both dYIN and dSWIPE using these F0 selection
approaches to the original algorithms YIN and SWIPE.

F. Quantitative Comparison

To evaluate the performance of our algorithms, we use the
MIR-1 K dataset [25], which comprises 1000 short clips of
karaoke-style recordings. Each clip includes separate audio
tracks for the monophonic singing voice and the accompa-
niment, along with manually created framewise F0 annota-
tions for the singing voice. As a performance metric, we use
mir_eval’s [27] raw pitch accuracy (RPA), which measures
the percentage of frames where the predicted F0 deviates by less
than 50 cents from the annotated F0. Additionally, we employ
raw chroma accuracy (RCA), which extends RPA by ignoring

TABLE I
PERFORMANCE COMPARISON ON THE VOCAL TRACKS OF MIR-1 K

TABLE II
RPA UNDER NOISY CONDITIONS, EVALUATED ON MIR-1 K

octave errors. Throughout this article, RPA and RCA are given
in percentages.

First, we use the monophonic singing voice as input to the
algorithms. The results are shown in Table I, where we compare
the performance of both dYIN and dSWIPE in combination with
the F0 selection approaches from Section II-E. For reference, we
also report the performance of the original algorithms YIN and
SWIPE, using the implementations from thelibf0 [28] library.
For YIN, we set an absolute threshold of 0.1. We can observe
that the performance is almost identical for all selection ap-
proaches, e.g., for dYIN with an RPA of 95.22 using “Argmax”,
95.05 using “Parabolic interpolation”, and 95.26 using “Local
weighted average”. The same holds for dSWIPE. Furthermore,
we observe that dYIN and dSWIPE achieve performance levels
comparable to their original counterparts. For instance, dSWIPE
combined with “Argmax” achieves an RCA of 96.48, only
slightly below the 96.89 achieved by SWIPE, demonstrating
that the modifications introduced have minimal impact on the
performance. For the rest of this article, we use the “Argmax”
F0 selection approach, as our primary focus is to evaluate the
underlying F0 estimators themselves.

To further assess the robustness of our algorithms, we eval-
uate their performance under noisy conditions. Specifically, we
create mixed inputs by combining the monophonic singing voice
tracks from MIR-1 K with their corresponding accompaniment
tracks at various signal-to-noise ratios (SNRs), and use these
mixtures as input to the algorithms. The predicted F0 values
are still evaluated against the annotations of the monophonic
singing voice. The results are summarized in Table II. As a
reference, we first examine the performance of the original YIN
algorithm, using three different values for its absolute threshold
parameter. For clean inputs (high SNR), the lowest threshold
of 0.1 yields the best performance, with an RPA of 95.20. At
lower SNRs, however, higher thresholds are more effective. For
instance, at an SNR of 10 dB, a threshold of 0.3 results in the
best performance with an RPA of 81.40. In comparison, dYIN
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Fig. 5. Results of the reverse engineering experiment using gradient descent with different F0 estimators. (a) Spectrogram of the initial random noise signal,
serving as the starting point. Spectrograms of the optimized signals after gradient descent with (b) dYIN, (c) dSWIPE, and (d) CREPE. The results in (b) and (c)
show clearer harmonic structures than (d), highlighting the greater interpretability of the differentiable model-based F0 estimators dYIN and dSWIPE.

achieves a performance comparable to the best threshold setting
of YIN across all tested SNRs, for example reaching an RPA
of 83.59 at an SNR of 10 dB. While this makes dYIN appear
even more robust than YIN in this particular setting—achieving
comparable performance without threshold tuning—this obser-
vation may be specific to the YIN implementation used here.
In particular, the way the CMNDF is computed differs across
implementations, and subtle variations in this step can substan-
tially influence performance and robustness. A more detailed
analysis of these implementation-dependent effects is beyond
the scope of this work. Overall, we conclude that dYIN retains
the robustness of YIN under noisy conditions, even though it
omits absolute thresholding and estimate refinement using a
restricted search range. Likewise, we compare the robustness
to noise for dSWIPE and SWIPE. For instance, at 10 dB SNR,
dSWIPE reaches an RPA of 77.68, compared to 78.84 for
SWIPE. Although this moderate difference is consistent across
all tested SNRs, the overall performance under noisy conditions
can still be considered comparable.

III. CASE STUDIES

In this section, we present three case studies to investigate
the behavior of our differentiable signal processing-based F0
estimators, dYIN and dSWIPE, and compare them with the deep
learning-based CREPE.

A. Reverse Engineering

The first experiment explores the input signals required by
each F0 estimator to produce a user-specified F0 trajectory. To
find such signals, we create an initial signal x(init) consisting of
random noise, which serves as the starting point for optimization.
We do not assume any signal model, but each sample of the signal
is treated as an independent parameter to be optimized. Addition-
ally, we define a target F0 trajectory that increases exponentially
in frequency from 200 Hz to 1500 Hz over a duration of 10 s,
representing the F0 contour of a chirp-like signal. We convert
this F0 trajectory into target vectors using Gaussian blurring with
a standard deviation ofσ = 25 cents as described in Section II-D.

For each F0 estimator, starting with x(init) as input, we iter-
atively compute the classification loss between the estimator’s
predictions and the target vectors and apply gradient descent
w.r.t. the samples of the time-domain input signal. We perform
2000 optimization steps each, after which the loss converged

for all F0 estimators. This reverse engineering process relies on
the differentiability of the F0 estimators and produces optimized
input signals tailored to the respective models, which we denote
by x(opt)

dYIN, x(opt)
dSWIPE, and x(opt)

CREPE.
The spectrograms of x(init) and the reverse-engineered sig-

nals are shown in Fig. 5. The time-domain signals were max-
normalized before spectrogram computation to improve vi-
sualization and facilitate comparison. The results reveal that
x(opt)

dYIN (Fig. 5(b)) and x(opt)
dSWIPE (Fig. 5(c)) exhibit a clear harmonic

structure with many overtones. Although dYIN’s periodic signal
model is theoretically satisfied by any periodic signal, including
a single sinusoid, x(opt)

dYIN is not merely a sinusoidal chirp but in-
cludes multiple harmonics, being similar to real-world periodic
signals.

In contrast, x(opt)
dSWIPE (Fig. 5(c)) mainly consists of the funda-

mental frequency and its prime harmonics, reflecting the design
of dSWIPE’s spectral templates. Additionally, frequency com-
ponents between the harmonics are more strongly suppressed
in x(opt)

dSWIPE compared to x(opt)
dYIN. This suppression occurs because

the spectral templates include negative lobes around the positive
ones, which actively penalize the presence of frequencies at
the positions of these negative lobes. However, the softmax
activation function introduces an additional effect: Increasing
the probability of a specific F0 class can be achieved either by
increasing the similarity to that class’s template or by reducing
the similarities to the templates of all other F0 classes. This effect
becomes particularly noticeable starting at the 5-second mark in
Fig. 5(c), where x(opt)

dSWIPE shows significant low-frequency noise.
This noise arises during the optimization process, as reducing the
similarities to the templates of low F0 classes—whose negative
lobes overlap this frequency range—unintentionally amplifies
low-frequency components.

Finally, x(opt)
CREPE (Fig. 5(d)) also shows harmonic structure,

but it is less pronounced and more noisy compared to x(opt)
dYIN.

Further, we cannot see as many overtones, and the harmonic
structure does not continue above 4 kHz, which demonstrates the
improved interpretability of model-based F0 estimation methods
compared to deep learning-based approaches.

B. Vocal Melody Extraction

In our second case study, we address the task of vocal melody
extraction, which involves estimating the F0 trajectory of a
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Fig. 6. Block diagram of our modular vocal melody extraction pipeline.

monophonic singing voice within a polyphonic music con-
text [29]. Early signal-processing approaches to this problem
are based on salience estimation [30], [31] or source separa-
tion [32], [33]. In contrast, most recent approaches apply deep
learning [34], [35], [36], [37], [38], either directly predicting
the vocal melody from the mixture input [34], [35], [36], [37],
or by first training a model for explicit source separation and
subsequently fine-tuning it for vocal melody extraction [38].

1) Processing Pipeline: Here we address vocal melody ex-
traction using a modular processing pipeline similar to the
early source separation-based approaches, consisting of a vocal
melody separator (VMS) and an F0 estimator as shown in Fig. 6.
The VMS takes as input the mixture audio signal x and outputs
an audio signal xmelody which should only contain components
related to the vocal melody. Since the accompaniment may also
include singing voices that are not considered part of the melody,
this task differs slightly from singing voice separation. Having
xmelody as input, an F0 estimator then estimates the vocal melody
ŷ. Note that we do not require the VMS to output a clean version
of the separated melody line, but rather to prepare an optimized
input for the subsequent F0 estimator, cf. Section III-A.

As VMS, we use common music source separation
models such as Open-Unmix (UMX) [39] or the Mel-
RoFormer (MRF) [38]. For end-to-end training, a differentiable
F0 estimator is required, where we use dYIN, dSWIPE, or
CREPE. We also consider non-trainable pipelines with Melo-
dia [30] as F0 estimator.5 To describe these pipelines, we adopt
the naming convention VMS–F0, where bold text indicates com-
ponents trained within the end-to-end pipeline, and an asterisk
marks pretrained components. For example, UMX–CREPE∗ rep-
resents a pipeline where we train UMX from scratch using gra-
dients from CREPE, and CREPE is pretrained for F0 estimation
but kept frozen during the training of the pipeline.

2) Datasets and Training Details: Following [35], [37], we
select all clips from MIR-1 K [25] and 35 tracks with vocal
melody from MedleyDB [40] as training data. MedleyDB is
a multitrack dataset designed for various music information
retrieval tasks, and it includes tracks with detailed vocal melody
annotations. Note that both MIR-1 K and the selected tracks from
MedleyDB contain segments where singing voices are part of
the accompaniment.

If model training is involved, we use the Adam optimizer [41]
with learning rate 1e-6, segments of 5 s length at a sampling rate
of 16 kHz, a batch size of 16, and optimize for up to 1500 epochs.
In this case study, we use binary F0 targets as described in (8),
having achieved better results than Gaussian-blurred targets in
preliminary experiments.

5https://github.com/MTG/essentia

TABLE III
RESULTS OF THE VOCAL MELODY EXTRACTION EXPERIMENT

For evaluation, we use 12 tracks from ADC2004 and 9 tracks
from MIREX056 which contain vocal melody with accompani-
ment. We consider the tracks from ADC2004 as more difficult,
as they include opera recordings, synthesized vocal melody, or
singing voices in the accompaniment. In contrast, the MIREX05
tracks are pop and jazz recordings, where no additional singing
voices are present beyond the vocal melody.

3) Experimental Results: To evaluate the effectiveness of
our approach, we compare melody extraction pipelines with
different configurations: a VMS pretrained for singing voice
separation, a VMS trained from scratch using gradients from
the F0 estimator, and a pipeline without VMS. As performance
metrics we use RPA and RCA as introduced in Section II-F. The
results of our experiment are presented in Table III.

The pipelines without VMS and that use model-based
F0 estimators show limited performance. For instance, on
ADC2004, None–dYIN and None–dSWIPE achieve RPAs of
only 50.61 and 50.98, respectively, and even worse performance
on MIREX05. This is expected since these F0 estimators are
designed to receive monophonic inputs, while the test datasets
contain polyphonic music. In contrast,None–CREPE∗ performs
much better, achieving RPAs of 73.68 and 81.37 on ADC2004
and MIREX05, respectively. This performance is particularly
impressive when compared to the approach of Shao et al. [37],
which is among the current state of the art in vocal melody
extraction, achieving RPAs of 85.70 and 87.60 on these datasets.
However, CREPE’s training data includes MIR-1 K and Med-
leyDB, both of which provide not only the monophonic audios
corresponding to the melody annotations but also the accompa-
niment. It remains unclear whether CREPE was trained using
the monophonic audios as inputs or the mixtures. In the latter
case, CREPE would have effectively been trained for melody
extraction, which would explain its good performance in this
experiment. The pipeline None–Melodia also performs well,
achieving RPAs of 71.34 and 77.38 on ADC2004 and MIREX05.
This good performance is expected, as Melodia is specifically
designed as a melody extraction algorithm.

6http://labrosa.ee.columbia.edu/projects/melody/

https://github.com/MTG/essentia
http://labrosa.ee.columbia.edu/projects/melody/
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When using a randomly initialized UMX model as VMS
and training the pipeline in an end-to-end fashion, the results
vary considerably between configurations and test datasets.
For instance, while UMX–dYIN shows only a slight improve-
ment over None–dYIN on ADC2004 with an RPA of 52.93
compared to 50.61, it demonstrates a substantial performance
boost on MIREX05, achieving an RPA of 58.99 compared
to 38.69. Still, the performance of UMX–dYIN is far behind
that of None–CREPE∗, indicating that the gradients provided
by dYIN are not sufficient to successfully train a model like
UMX. The pipeline UMX–dSWIPE shows strong improvements
over None–dSWIPE with an RPA of 71.42 compared to 50.98
on ADC2004 and an RPA of 81.55 compared to 32.39 on
MIREX05. On MIREX05,UMX–dSWIPE even reaches the RPA
of 81.37 achieved by None–CREPE∗, highlighting dSWIPE’s
potential for being used in end-to-end trainable pipelines.
For UMX–CREPE∗, we observe only small improvements over
None–CREPE∗, with an RPA of 74.16 compared to 73.68 on
ADC2004 and 83.55 compared to 81.37 on MIREX05. This
suggests that CREPE may already have learned to focus on the
melody line.

In Table III, we also provide the GPU memory requirements
for training these pipelines. BothUMX–dYIN andUMX–dSWIPE
are highly resource-efficient, requiring only 1.0 GB and 1.5 GB
of memory, respectively, making them suitable for machines
with limited GPU capacity. In contrast, training UMX–CREPE∗

demands with 24.0 GB significantly more memory due to the
model size of CREPE.

The best results are achieved by pipelines utilizing a pre-
trained MRF model7 as VMS, demonstrating this model’s out-
standing ability to separate singing voice from accompaniment.
Having the singing voice estimate of MRF as input, all differen-
tiable F0 estimators produce very good vocal melody estimates
for MIREX05, with RPAs of 91.16 for dYIN, 93.68 for dSWIPE,
and 94.24 for CREPE. These pipelines thereby outperform direct
approaches to vocal melody transcription such as the method by
Shao et al. [37]. For ADC2004, the results are less favorable
because MRF’s singing voice estimates include the background
singers, which, however, are not considered as melody.

4) Qualitative Examples: Due to the design of our pipeline
with xmelody as an interpretable intermediate representation, we
can now inspect the properties of that representation in different
pipelines. In Fig. 7, we show spectrograms for an audio excerpt
from the ADC2004 dataset. In particular, in Fig. 7(b) and (c),
we compare the spectrograms of xmelody originating from the
pipelines UMX–dSWIPE and MRF∗–dSWIPE, where the MRF
model of the latter is trained to perform singing voice sepa-
ration but was not trained using the gradients from dSWIPE.
As mentioned before, the goal of the VMS is not to perform
perfect source separation but to transform the mixture signal
into a signal from which the vocal melody can be well estimated
by the subsequent F0 estimator. This behavior is evident in
Fig. 7(b), within the red frame, where we observe characteristics
previously seen in dSWIPE’s optimized input in Fig. 5(c): Only

7[Online]. Available: https://github.com/KimberleyJensen/Mel-Band-
Roformer-Vocal-Model

Fig. 7. Comparison of the intermediate representations xmelody for different
vocal melody extraction pipelines using an audio excerpt from ADC2004 (vocal
melody with accompaniment). (a) Spectrogram of the original mixture x.
Spectrogram of xmelody obtained from the pipelines (b) UMX–dSWIPE and
(c) MRF∗–dSWIPE.

the first and the prime harmonics are visible, maximizing the
similarity with one of dSWIPE’s spectral templates. Also, the
higher harmonics appear as blurred rather than sharp lines,
resembling the cosine lobes of the templates. In contrast, the
MRF model produces a signalxmelody that contains all harmonics
without any blurring, see Fig. 7(c).

5) Summary: Although best results are achieved by leverag-
ing a pretrained source separation model, this experiment indi-
cates the potential of backpropagating through the differentiable
model-based F0 estimators dYIN and dSWIPE. While the train-
ing of a music source separation model such as MRF requires
separated stems and is very resource-expensive [38], training
a pipeline such as UMX–dSWIPE only requires mixed audio
and the corresponding melody annotations and is computation-
ally efficient. Furthermore, compared to direct approaches such
as [37], UMX–dSWIPE benefits from improved interpretability,
providing an intermediate source-separation-like representation.

C. Timbre-Specific F0 Estimation

In this final case study, we aim to demonstrate the potential
of training dSWIPE as a timbre-specific F0 estimator by opti-
mizing its F0-dependent spectral templates for a specific type of
input—in this case, violin recordings. While the authors of [42]
consider transcribing the violin pitch from a mixture with piano,
we here only consider monophonic violin recordings without
any accompaniment. For this purpose, we use the ViolinEtudes
dataset [43], which comprises 925 monophonic violin record-
ings of pedagogical pieces performed by 21 distinct players,
along with framewise F0 annotations for each recording.

https://github.com/KimberleyJensen/Mel-Band-Roformer-Vocal-Model
https://github.com/KimberleyJensen/Mel-Band-Roformer-Vocal-Model
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TABLE IV
RESULTS OF TIMBRE-SPECIFIC F0 ESTIMATION ON THE VIOLINETUDES TEST

SET

We split the dataset into a training set of 694 recordings and a
test set of 231 recordings, ensuring no overlap in performers
between the two sets. This performer-based split avoids the
“album effect” [44], which can lead to overly optimistic results
when tracks with identical recording conditions are included in
both training and test sets. This setup enables a more robust
evaluation of the model’s ability to generalize across varying
recording conditions and timbral characteristics.

In Section II-B, we presented three approaches to make
dSWIPE trainable. We explore all these options:dSWIPE-F has
a fully trainable template matrix, dSWIPE-P learns a prototype
shared by the templates of all F0 classes, and dSWIPE-C only
learns certain components, in our case a prototype lobe and the
harmonic decay factor from which all templates are constructed.
All trainable parameters were initialized randomly, except the
harmonic decay factor which was initialized with its default
value of 0.5. In Table IV, we provide for all options the respective
numbers of trainable parameters and the performance metrics
when evaluated on the ViolinEtudes test set. Only the methods
printed in bold were trained on the ViolinEtudes training set.

Among the untrained baselines, YIN shows limited perfor-
mance with an RPA of 63.60, while SWIPE achieves consider-
ably better results, reaching an RPA of 78.28. This is only slightly
surpassed by CREPE∗, which reaches an RPA of 81.43. Among
the trained methods, dSWIPE-Fwith individually learned tem-
plates does not generalize well, achieving an RPA of 67.34 which
suggests overfitting. In contrast, template sharing ofdSWIPE-P
serves as an effective regularization strategy, resulting in an
RPA of 79.40, slightly improving over the training-free SWIPE.
Sharing a single prototype template introduces a strong inductive
bias: While learning each template individually allows maxi-
mum flexibility (dSWIPE-F), generating all templates from a
shared prototype enforces consistent behavior across F0 classes
and thus supports generalization across F0 classes (dSWIPE-P).
Finally, dSWIPE-C, which learns only a prototype lobe and the
harmonic decay factor, also yields strong results with an RPA of
78.26, essentially performing as good as SWIPE.

While the trained methods perform similarly compared to the
original SWIPE (dSWIPE-P and dSWIPE-C), and in one case
less effectively (dSWIPE-F), the findings are still noteworthy.
Specifically, this experiment demonstrates that, without relying
on explicit engineering knowledge, it is possible to learn spec-
tral templates that perform as effectively as the hand-crafted
templates of the original SWIPE. Although we are not aware
of any cases where the original SWIPE templates fail, we
now have a technique to identify suitable templates for such

Fig. 8. Normalized spectral templates for the F0 class 523Hz. (a) Original
template of SWIPE. Learned template of (b) dSWIPE-F, (c) dSWIPE-P, and
(d) dSWIPE-C.

situations, underscoring the potential of data-driven approaches
in designing adaptable and task-specific components.

Finally, we compare the spectral templates of all dSWIPE
variations in Fig. 8. To facilitate comparison, we show the
�2-normalized templates. While the original template in (a) con-
tains both positive and negative lobes, the template learned by
dSWIPE-F in (b) only shows positive lobes, being one potential
reason for the limited performance. Additionally, we notice that
the template includes all harmonics, rather than just the first and
prime harmonics as in the original template, potentially causing
more subharmonic errors. In contrast, the shared template of
dSWIPE-P in (c) also includes small negative lobes, thus being
more similar to the original template in (a). However, in (c),
we notice a baseline drift, which could be due to the use of the
softmax function, helping to reduce the similarity to all incorrect
F0 classes. The template ofdSWIPE-C in (d) is constructed like
the original template, but using a learned lobe and an optimized
harmonic decay factor. As already suggested by the quantitative
results, the templates in (d) and (a) exhibit strong similarity,
with the learned lobe closely resembling a cosine lobe and the
harmonic decay factor of 0.476 being only slightly lower than
the 0.5 seen in (a).

These observations underline the sophisticated design of the
original SWIPE’s templates. Despite being hand-crafted, they
achieve a good performance, proving their effectiveness in cap-
turing the key spectral features for F0 estimation. This balance
between hand-crafted and learned approaches provides valuable
insights into the strengths of both methodologies.
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IV. CONCLUSION

In this article, we introduced dYIN and dSWIPE, differen-
tiable variants of the classical F0 estimation algorithms YIN and
SWIPE. These methods bridge the gap between the paradigms
of classical signal processing and deep learning by preserving
interpretability and computational efficiency while enabling
gradient-based optimization.

Through three case studies, we demonstrated the versatility
and potential of these models. In reverse engineering, dYIN and
dSWIPE produced smoother and more interpretable gradients
compared to NN-based methods like CREPE. For vocal melody
extraction, dSWIPE showed strong performance in end-to-end
pipelines, being particularly useful for resource-limited scenar-
ios or if pretrained source separation models are unavailable.
Additionally, the timbre-specific F0 estimation experiment high-
lighted that dSWIPE’s templates can be optimized for specific
tasks, achieving results comparable to hand-crafted templates
without extensive manual engineering.

These findings emphasize the broader potential of differen-
tiable models like dYIN and dSWIPE. Beyond traditional F0
estimation, their dual role as signal processors and trainable
components opens new possibilities for resource-efficient, in-
terpretable, and adaptable systems. Future work will focus on
integrating these methods into larger multi-task pipelines and
exploring self-supervised and unsupervised learning contexts,
thereby expanding their applicability across diverse audio pro-
cessing tasks.
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