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Multi-Aspect Conditioning for Diffusion-Based
Music Synthesis: Enhancing Realism and

Acoustic Control
Ben Maman , Johannes Zeitler , Meinard Müller , Fellow, IEEE, and Amit H. Bermano

Abstract—Music synthesis aims to generate audio from sym-
bolic music representations, traditionally using techniques like con-
catenative synthesis and physical modeling. These methods offer
good control but often lack expressiveness and realism in timbre.
Recent advancements in diffusion-based models have enhanced
the realism of synthesized audio, yet these models struggle with
precise control over aspects like acoustics and timbre and are
limited by the availability of high-quality annotated training data.
In this paper, we introduce an advanced diffusion-based framework
for music synthesis that further improves realism and introduces
control through multi-aspect conditioning. This allows the synthe-
sis from symbolic representations to accurately replicate specific
performance and acoustic conditions. To address the need for pre-
cise multi-instrument target annotations, we propose using MIDI-
aligned scores and automatic multi-instrument transcription based
on neural networks. These methods effectively train our diffusion
model with authentic audio, enhancing realism and capturing
subtle nuances in performance and acoustics. As a second major
contribution, we adopt conditioning techniques to gain control over
multiple aspects, including score-related aspects like notes and in-
strumentation, as well as version-related aspects like performance
and acoustics. This multi-aspect conditioning restores control over
the music generation process, leading to greater fidelity in achieving
the desired acoustic and stylistic outcomes. Finally, we validate
our model’s efficacy through systematic experiments, including
qualitative listening tests and quantitative evaluation using Fréchet
Audio Distance to assess version similarity, confirming the model’s
ability to generate realistic and expressive music, with acoustic
control. Supporting evaluations and comparisons are detailed on
our website (benadar293.github.io/multi-aspect-conditioning).

Index Terms—Multi-Instrument synthesis, diffusion.
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I. INTRODUCTION

MUSIC synthesis, the process of generating audio from
symbolic music representations, is an important and

long-studied area of research with applications in music cre-
ation and production. Traditional signal processing approaches,
employing techniques such as concatenative synthesis [1], [2],
[3], [4] and physical modeling [5], [6], have been used to produce
high-quality audio for specific instruments. These methods pro-
vide explicit control over the audio output, thanks to note-wise
rendering and the manipulation of pre-recorded samples. Even
though these methods offer a variety of timbres, they still restrict
flexibility and often lack expressiveness and realism, especially
in terms of timbre and acoustic conditions. For example, replicat-
ing the unique sound of a specific orchestra or instrument poses
significant challenges, such as producing audio that resembles
the Berlin Philharmonic Orchestra or emulating the guitar sound
from a 1975 recording by Segovia.

Recent advancements in data-driven generative modeling
have addressed some of these limitations by enabling the infer-
ence of semantic aspects from example data [7], [8], [9], [10],
[11]. In particular, Denoising Diffusion Probabilistic Models
(DDPMs) have been extremely successful in rendering realistic
images and learning styles from example images [11], [12], [13],
[14]. Similarly, such models have been used to learn sounds
from examples, significantly improving the expressiveness and
realism of synthesized audio, including speech [15], [16] and
music [17], [18].

However, these data-driven models require large datasets with
detailed annotations of notes and instruments, confining them to
specific curated datasets or necessitating the use of lower-quality
synthesized data. For example, the DDPM-based approach
described by Hawthorne et al. [17] uses data based on concate-
native synthesis, compromising audio quality and resulting in
flat, less realistic audio.

Another problem is that these approaches often face chal-
lenges in precisely controlling aspects such as acoustics and
timbre. In particular, these data-driven generative methods may
encounter problems such as instrument drift, where the same
instrument is not rendered coherently in different parts of the
generated audio.

In this paper, building upon our previous work [21], we
introduce an advanced diffusion-based framework for music
synthesis that incorporates multi-aspect conditioning on notes,
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Fig. 1. Schematic overview of the proposed approach for diffusion-based
music synthesis using multi-aspect conditioning. Our model generates audio
conditioned both on the score, and on the version. The score contains the notes,
instruments and timing, providing the musical content. The version corresponds
to the specific acoustic and performance aspects, including timbre, rocording
environment, and style. Version conditioning provides control and flexibility,
enabling to generate different timbres of the same instrument (e.g., different
types of guitar), or different room acoustics.

instruments, performance styles, and acoustic details to signifi-
cantly enhance realism and control. Consequently, our method
facilitates the synthesis of music signals from symbolic rep-
resentations, accurately replicating specific performance and
acoustic conditions as provided in example recordings. For
instance, our model is capable of reproducing the guitar sound
from a 1975 recording of Segovia playing Albéniz’s “Capriccio
Catalán”, now applied to another piece, such as Jobim’s “Fe-
licidad.” Furthermore, even in more complex musical settings,
our model can transfer certain timbre and acoustic conditions
from orchestral recordings, such as Karajan’s 1962 recordings
of Beethoven’s symphonies with the Berlin Philharmonic, to
new musical works presented in symbolic format. To the best of
our knowledge, our work is the first to address such challenges
in a multi-instrument setting.

The main contributions of this paper, which substantially ex-
tends our initial study [21], can be summarized as follows. First,
to meet the demand for precisely annotated multi-instrument
symbolic data, we propose two approaches: one using MIDI-
aligned symbolic scores as in [21], and the other employing
recent multi-instrument transcription methods [22]. We demon-
strate that in both cases, the quality of the target data is sufficient
to leverage uncurated multi-instrument real-world audio for
training our diffusion model. This use of authentic training
data enables our model to capture genuine musical performance
characteristics, including subtle nuances in timbre and acoustics.

As a second main contribution, we expand the capabilities of
diffusion models by integrating control over multiple musical
aspects, including score-related aspects such as notes and instru-
mentation, as well as version-related aspects such as acoustics

and performance. Specifically, we demonstrate how version
control can be achieved using conditioning techniques based
on Feature-wise Linear Modulation (FiLM) layers [23]. Our
multi-aspect conditioning approach allows us to train a single
model on massive amounts of uncurated multi-instrument per-
formances with diverse instrumentation, including symphonic
orchestras, chamber orchestras, church organs, harpsichords,
violins, guitars, and more. Furthermore, we show how version
conditioning restores control over the music generation process,
leading to greater fidelity in achieving the desired acoustic and
stylistic outcomes. For an overview of our DDPM-based model,
see Fig. 2.

As a third contribution, we validate the efficacy of our model
through rigorous evaluation methods. These include listening
tests and the application of the Fréchet Audio Distance [24] to
assess both realism and version similarity, which confirms the
model’s ability to generate realistic and expressive audio. These
evaluations are complemented by a wide range of synthesized
music examples and comparisons with prior methods, all acces-
sible on our freely available website.1

The remainder of this paper is organized as follows. Section II
discusses related work, focusing primarily on music synthe-
sis. Section III introduces the computational pipelines of our
diffusion-based approach to music synthesis. In Section IV,
we present our main technical contribution, the multi-aspect
conditioning framework, which includes our extensions of score
conditioning using alignment and transcription techniques, with
our proposed version conditioning. In Section V we present
our proposed technique for consistent and smooth segment-
wise generation. Section VI details the evaluation criteria and
presents experiments, including qualitative listening tests and
quantitative evaluations. Finally, Section VII concludes the pa-
per and discusses future work, highlighting the potential of
version conditioning for automated instrumentation achievable
with pitch-only input.

II. RELATED WORK

Audio synthesis in current literature can be done auto-
regressively, where models directly construct a waveform
sample-by-sample [25], [31], [32]. Another approach, which we
take, operates in the spectral domain. This requires a subsequent
step to convert the generated spectral representation (whether
the short-time Fourier transform or mel-spectrogram) into a
waveform, but it is computationally more efficient.

For a data-driven approach, large amounts of labeled data are
required, i.e., paired datasets of audio recordings and their corre-
sponding time-aligned transcriptions. While such datasets exist
for instruments such as the piano thanks to special equipment
(e.g., Disklavier), this is not the case for other instruments. Thus,
previous works mainly focus on generating piano performances,
monophonic (single-voice) music (which is easier to label), or
music produced by a concatenative synthesizer [17], [27], which
is trivially supervised.

Table I provides a summary of existing methods for score-to-
music synthesis. Wang and Yang [26] use a U-Net to synthesize

1benadar293.github.io/multi-aspect-conditioning
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Fig. 2. Overview of our proposed diffusion-based synthesis model. Our model learns to denoise mel-spectrograms conditioned on score-based and version-based
information. Version conditioning (determining the acoustics, specific timbre, recording environment and style) is done through FiLM layers at each block, which
can be applied to either a T5 transformer or a U-Net. The version condition is represented by the performance ID, and is inserted at each layer by concatenation with
the diffusion timestep. The score condition is provided as additional input, in the form of a MIDI-like piano-roll representation. For sampling consistent segments
with smooth transitions, we use an overlapped generation technique borrowed from Computer Vision [19], [20].

TABLE I
OVERVIEW OF PREVIOUS WORK INDICATING ABILITY TO RENDER MULTIPLE

INSTRUMENTS SIMULTANEOUSLY (MULTI), VERSION CONTROL (VERSION),
GENERATING ORCHESTRAL SYMPHONIES (SYMPH.), DATA SIZE, AND RATIO OF

REAL VS. SYNTHETIC DATA USED FOR TRAINING (REAL%)

solo violin, cello, and flute performances, requiring a separate
model for each instrument. It is trained with a spectral recon-
struction loss, without diffusion. Similarly, Dong et al. [28] use a
Transformer architecture to synthesize solo violin or piano. Both
works produce only monophonic and single-instrument music
(i.e., only a single note or single instrument is synthesized at any
given time).

Wu et al. [29] learn a parametric model of a musical per-
formance, synthesizing from performance controls such as in-
tensity, vibrato, etc. Although promising, a central drawback is
that this work only operates on monophonic single-instrument
data, similar to former works—due to the higher complexity of
polyphonic music, and lack of high-quality polyphonic training
data.

In multi-instrument synthesis, Hawthorne et al. [17] use a
T5 Transformer-based diffusion model. While this method is
promising and produces high-fidelity audio, it has limitations:
It does not have control over the version, acoustics, and style
(e.g., specific type of organ when several exist, or recording
environment), and produces less realistic sound, due to lack of
real annotated data, as demonstrated on our project page.

Kim et al. [30] use a diffusion-based approach following
Hawthorne et al. [17], with a down-scaled T5 model, for guitar
synthesis. The work is limited to guitar alone, and is trained
mainly on synthetic data due to the aforementioned lack of real
annotated data.

Other works exist for generating audio conditioned on text
prompts [33], [34], however, in this work we focus on score-
conditioned music synthesis.

III. DIFFUSION-BASED MUSIC SYNTHESIS

An overview of our method is depicted in Fig. 2. We seek
to enhance the generation quality and control of an off-the-
shelf diffusion-based music generator using a collection of
real multi-instrument performances with corresponding scores
and version information. Hence, we start from a dataset D =
{(ai, si, vi)}Ni=1, comprising audio performances ai, their sym-
bolic score annotation si, and information regarding the version
vi in the form of an identifier for the recording or performance.
We represent a version condition vi as an integer number, where
recordings performed by the same ensemble in the same record-
ing environment are assigned the same number (Section IV-C).
With this dataset, we train a music synthesizer using different
state-of-the-art architectures, namely T5 Transformer [17] or
U-Net [11], infused with version conditioning.

Similar to previous works [17], we operate in the spectral
domain, using a mel-spectogram representation. Thus, ai is rep-
resented as a mel-spectrogram of dimensions Ti × Fmel where
Ti is the number of time frames and Fmel is the number of mel-
spectrogram bins. We postulate our method can be adapted to
higher-dimensional spectral representations (e.g., STFT), or the
waveform domain, though at significantly higher computational
costs. To convert mel-spectrograms into audio, we rely on the
state-of-the-art Soundstream vocoder [35], which is the same
vocoder used by Hawthorne et al. [17]. It was trained with a
combination of spectral reconstruction and adversarial losses.
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We represent the musical score si as a MIDI-like roll aligned
with the audio on the note onset level, which is a matrix of
dimensions Ti × (2 · P · (I + 1)), where Ti is the number of
time frames, and P , I are the numbers of pitches and instru-
ments, respectively. We use additional P classes represent-
ing instrument-independent pitches, hence the factor of I + 1.
The instrument-independent pitch classes serve two purposes:
Learning fundamental frequencies, which are common across
instruments, and enabling generation from pitch-only input by
applying dropout to the instrument information. Furthermore,
we use both onset information and approximate duration for
each pitch and instrument, hence the factor of 2.

Finally, to generate long audio streams in a segment-wise
fashion, while ensuring seamless transitions between generated
segments, we adapt an overlapping technique, borrowed from
visual generation (Section V). This technique is complemented
by version conditioning, which also implicitly enforces con-
sistency across different generated segments, thus preventing
timbre drift.

A. Denoising Diffusion Probabilistic Models

We train our neural synthesizer as a Denoising Diffusion Prob-
ablistic Model (DDPM) [11]. DDPMs are trained to estimate the
inverse of a Gaussian diffusion noising process, parameterized
by a noise level schedule βt, t = 0, . . . T , typically increasing
from 0 to 1. By substituting noise level βt with signal level,
αt = 1− βt, the process can be represented as a Markovian
chain, in the following recursive form:

xt =
√
αtxt−1 +

√
1− αtε (1)

where t ≥ 1, x0 is a datapoint, i.e. a clean spectrogram, and
ε ∼ N (0, I). By further substituting ᾱt =

∏
i≤t αi, one can

equivalently represent the process by the non-recursive form:

xt =
√
ᾱtx0 +

√
1− ᾱtε. (2)

A DDPM εθ(xt, t) estimates the reverse process by predicting
the normal noise ε, given the noisy spectrogram xt and the
diffusion timestep t. In our case of multi-aspect-conditioned
music synthesis, it can be trained by minimizing the empirical
loss:

E(x0,s,v)∼D, ε∼N (0,I), t∼U({1,... T })‖εθ(xt, t, s, v)− ε‖1 (3)

where s, v are the score and version conditions, respectively.
In visual models the L2-norm is common, however we follow
Hawthorne et al. [17] and use the L1-norm.

Note that ᾱ0 = 1, ᾱT = 0, and xT ∼ N (0, I). Therefore, the
model learns to sample from the latent data distribution p by
mapping (nearly) isotropic noise to data points:

p(x0|xT , s, v), xT ∼ N (0, I), (4)

thus modelling the variation in the data. In our approach to multi-
aspect-conditioned music synthesis, we use DDPMs to capture
the variations in musical performances and to account for subtle
nuances, since the same musical score can have infinitely many

Fig. 3. Architecture of the T5 Transformer. The difference from Hawthorne
et al. [17] is incorporation of version conditioning using FiLM layers. In the
spectrogram decoder the version representation is concatenated to the diffusion
timestep representation, and both are inserted into FiLM layers. In the score
encoder, the version representation is inserted through FiLM layers. Note that
the score encoding is independent of the diffusion timestep, similar to Hawthorne
et al. [17].

interpretations, even when played by the same musicians under
identical acoustic conditions.

B. Architecture

We experiment with two architectures: A T5 Transformer used
for score-conditioned spectrogram synthesis [17], and a U-Net
originally used for images [11]. We enhance both models with
version conditioning. The T5 architecture, which is our main
focus, is depicted in Fig. 3.

The T5, borrowed from Hawthorne et al. [17], comprises
a transformer decoder, which is the generative backbone that
denoises the spectrogram, and a transformer encoder, providing
a representation of the score condition as auxiliary input to the
decoder, for note and instrument control. The decoder receives
the encoded score through cross-attention layers. A central
motivation for separating denoising from score conditioning in
the architecture is modularity—it theoretically enables separate
training of each component, even on different datasets, which is
common in text-to-image models [12], [13], [14]. Hawthorne
et al. [17] train this model on a synthetic dataset, without
version conditioning. We incorporate version conditioning into
this model, and train it from scratch on real performances alone.
Both the original T5 model of Hawthorne et al. [17] trained on
synthetic data, and the T5 trained on our dataset, without version
conditioning, serve as baselines for comparison, to evaluate both
the effect of version conditioning, and the effect of using real
training data (Section VI).

Although most of the evaluation in this work (including the
listening tests) is done with the T5, we also experimented with
a U-Net. We use the exact same architecture as Ho et al. [11],
but adapt it to spectrogram synthesis by modifying all oper-
ations (convolution, attention, and group normalization) to be
1D rather than 2D, regarding the frequencies as channels. This
allows for interactions between distant frequencies, inherent in
spectrograms (partial frequencies), and is common practice in



72 IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. 33, 2025

Fig. 4. Multi-aspect conditioning. We condition our model both on the score
and on the version. The version is defined by a set of recordings by the same
performer, in the same recording environment, e.g., a recording of Toscanini
performing Beethoven’s 5th symphony from 1952. Our model enables to syn-
thesize new scores with the target version. In the latter example, the model can
generate a performance of Brahms’ 4th Symphony, with the acoustics and style
of the 1952 Toscanini recording of Beethoven’s 5th symphony.

spectrogram synthesis (e.g., Wang and Yang [26] use a 1D U-Net
without diffusion). Results for the U-Net can be found in the
Appendix2 on our project page. As can be seen there, and from
a qualitative observation, the T5 achieves slightly better results,
but the U-Net requires significantly less training time.

IV. MULTI-ASPECT CONDITIONING

Our model is conditioned on multiple aspects: The noise level
(as is common in diffusion models), the musical score informa-
tion, and the version. In the following sections we explain how
each condition is incorporated.

A. FiLM Layers and Diffusion Time Step Condition

A central mechanism we use for conditioning is Feature-wise
Linear Modulation (FiLM) layers [23], which are especially
suitable for multi-task cases, where a model learns many similar
tasks simultaneously. For example, a diffusion model typically
learns to denoise with many different noise levels—each noise
level can be regarded as a slightly different task. FiLMs enable
the different tasks to share most parameters while maintaining
flexibility. The features at each level of the network are slightly
modified with an affine transformation, according to the condi-
tion. Such transformations are also referred to as modulations
(not to be confused with a musical modulation of key).

FiLMs are typically used in diffusion models to handle dif-
ferent noise levels, i.e., diffusion timesteps [17]. In our case of
synthesis using version conditioning, we further extend the mod-
ulations at each layer to control the desired acoustics depending
on the version v (Section IV-C).

We apply FiLMs by predicting an affine transformation
for each block of the network using multi-layer perceptrons
(MLPs). More explicitly, given a condition c (representing a
diffusion timestep t, or an ID number v corresponding to the

2benadar293.github.io/multi-aspect-conditioning/static/pdfs/Appendix.pdf

version, or a combination of both), we learn an MLP embedding
C = Mθ(c) ∈ R

e. For the i-th block of the network with input
features hi,j , 0 ≤ j < ni, we learn linear layers Lscale

i , Lshift
i :

R
e → R

ni and modulate the input features to obtain new fea-
tures h′

i:

h′
i,j = FiLM(hi,j |γi,j , βi,j) = γi,jhi,j + βi,j (5)

where γi = 1 + Lscale
i (C) and βi = Lshift

i (C). See Section IV-C
for details on combining the version condition with the diffusion
timestep condition.

B. Score-Based Condition

A necessary requirement for any synthesizer is control over
notes and instrumentation in generated performances. When
following a data-driven approach, such control requires train-
ing data consisting of musical performances paired with their
corresponding reference transcriptions. Any score-related as-
pect we seek to control should be faithfully represented in the
corresponding reference transcription. Therefore, control over
notes, exact timing, and instrumentation requires training data
to have accurate transcriptions of all these aspects.

Music transcription in general, and especially of multi-
instrument performances, is known to be a hard problem due to
temporal-spectral overlaps and the lack of training data. Thus,
previous DDPM-based works resort to artificial data generated
by concatenative synthesis, for which transcriptions are trivially
available [17], [30]. Unfortunately, this comes at the expense of
realism, as the model learns to imitate the sound of a concate-
native synthesizer, rather than real musical performances, and
thus does not leverage the full generative power of DDPMs.

Recent work by Maman and Bermano [22] shows potential in
transcribing general multi-instrument recordings. They propose
a unified framework for automatic music transcription, and
audio-score alignment based on neural features of transcription
models. We show that this transcription approach provides ef-
fective score conditioning, enabling to train a diffusion-based
synthesizer on large amounts of uncurated real performances of
diverse instrumentation, while maintaining control over notes
and instrumentation.

1) Alignment vs. Transcription: The score conditions for the
synthesizer should be exact score representations of the corre-
sponding audio. These can be obtained in two ways:
� Alignment of an existing digital score representation with

the audio
� Transcription predicted by an automatic transcriber
Both approaches have benefits and limitations in terms of

robustness and accuracy: Alignment is generally easier than
transcription and is constrained to a well-defined set of note
events, including instrument information, eliminating confusion
between pitches and instruments. Previous work shows that a
weak transcriber can still produce an accurate alignment [22],
[36]. On the other hand, automatic prediction can be more robust
in case of alignment errors, which often occur [22], [36].

From a practical perspective, transcription is more favorable
than alignment, as for most musical genres and performances
(e.g. jazz or rock music) accurate scores are not easily available,

benadar293.github.io/multi-aspect-conditioning/static/pdfs/Appendix.pdf
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or do not exist. A “universal” automatic transcriber (for which
recent work [22] shows promising results) provides transcrip-
tions for a wider range of musical performances, facilitating the
use of massive training data for the synthesizer, similar to large
text-to-image models [12], [13], [14].

In this work, we experiment with both approaches and show
that they produce comparable results. Due to the major practical
benefits of the transcription approach, we perform qualitative
listening tests (Sections VI-D-1-VI-D-2) on a synthesizer trained
with transcriptions as conditions. In addition, we quantitatively
evaluate and compare both score conditioning approaches, and
show comparable performance (see Appendix and samples on
project page).

2) Score Errors: We note that both approaches may lead to
errors, or deviations between the musical performance and the
assigned reference notes. However, a small amount of errors
will not necessarily negatively impact the model, as the model
is trained to generate performances from the distribution of real
performances, that do not contain errors, from possibly noisy
scores, thus learning to correct errors. Still, investigating the
effect of transcription or alignment accuracy on the model’s
performance is an important direction for future work.

C. Version-Based Condition

In musical performances, many aspects other than the musical
score itself bear significant influence on the outcome, includ-
ing both acoustic- and performance-related aspects. Acoustic-
related aspects include specific instrument timbre, e.g., the spe-
cific kind of guitar used, the singer identity, the church organ
register, or more general acoustics such as the room acoustics,
the orchestra size, position of the audience or recording device
relative to the orchestra, and many more. Performance- or style-
related aspects include, for example, dynamics and expression—
the same musical segment can be played in infinitely many styles
with varying intensity or fluctuation, e.g., using vibrato, tremolo,
or staccato, legato, etc. All of these aspects are reflected in the
specific version of the musical piece.

A successful synthesizer should take into account the latter
aspects associated with the specific version, in addition to the
score. Therefore, we condition our generated performances on
the target version, in order to obtain its special characteristics.
This version conditioning enables acoustic and style control, and
reduces the ill-posedness of score-conditioned music synthesis.
The different aforementioned version-related factors such as
timbre, acoustics, and style are thus represented implicitly by
the version condition. Using this mechanism, we can generate
different types of the same instrument (e.g., guitars of differ-
ent timbres), or different orchestral sounds. We demonstrate
this on our project page, by synthesizing the same scores
with different orchestras, harpsichords, church organs, and
guitars.

We represent a version condition as an integer number vi,
where recordings performed by the same ensemble in the same
recording environment are assigned the same number. Each
condition can represent a single recording of a few minutes
in the train set (e.g., Segovia playing Albéniz’s Capriccio

Catalán on the guitar), or a set of recordings of several hours
(e.g., of Beethoven’s concertos for piano and orchestra per-
formed by Mitsuko Uchida and The Royal Concertgebouw
Orchestra).

1) Version Conditioning With FiLM Layers: We incorporate
the version condition using FiLM layers, similar to diffusion
timesteps. As mentioned in Section IV-A, FiLM layers are suit-
able for multi-task cases. In the case of a synthesizer trained on
many unrelated performances of diverse instrumentation, each
performance with its corresponding acoustics and style should
be regarded as a slightly different task.

As mentioned in Section III-B, the T5 architecture we use [17]
consists of a spectrogram decoder, denoising the spectrogram,
and a score encoder, providing a representation of the notes as
auxiliary input to the decoder through cross-attention layers.
Note that Hawthorne et al. [17] condition only on the diffusion
timestep and not on the version. They use FiLMs in the decoder
to incorporate the diffusion timestep into denoising, but not to
the score encoder; i.e., the score representation is independent
of the noise level.

We incorporate the version condition into the decoder and en-
coder using FiLMs in the following manner: We learn two MLP
representations for the version v, and diffusion timestep t, which
we denote by Mθ(v), Nθ(t) ∈ R

e. For the decoder FiLMs, we
concatenate them, and use the combined condition:

C = C(v, t) = concat(Mθ(v), Nθ(t)) ∈ R
2e (6)

in (5) (see also Fig. 3). For the score encoder FiLMs we use
the version condition alone, without the diffusion timestep, as
explained above, leading to the condition:

C = C(v) = Mθ(v) ∈ R
e. (7)

For the U-Net, we use FiLMs to condition each block on the
combination of the diffusion timestep and the version, as in (6).

V. TEMPORAL COHERENCY & SMOOTH TRANSITIONS

We generate long performances of several minutes by seg-
ments of ∼5 seconds each, dictated by memory constraints.
This raises an issue of coherency and consistency between
segments. A naïve approach of block-wise synthesis will allow
abrupt changes in volume, timbre, expression, ambience, etc.
in transition points, due to different trajectories in the diffusion
reverse process. Moreover, even with smooth transitions, timbre
drift can occur, i.e., changes in timbre between segments. We
propose a simple and effective overlapped generation technique
for smooth transition between segments, adapted from computer
vision.

A. Smooth Transitions

For smooth transition between segments, we generate seg-
ments in a batch with overlaps, smoothly interpolating between
consecutive segments in each step of the sampling process. De-
note by x̂left

0 , x̂right
0 the overlapping parts of consecutive segments

in a predicted batch x̂0, such that x̂left
0 is the end of a segment

and x̂right
0 is the beginning of the consecutive segment (Fig. 2,

bottom right). Denote their shape by Tol × Fmel where Tol is the
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number of overlapping frames. We use an interpolation matrix
M of the shape Tol × Fmel, linearly decreasing from 1 to 0 along
the time axis and constant across the frequency axis. We update
x̂left
0 and x̂right

0 to the value of:

M · x̂left
0 + (1−M) · x̂right

0 . (8)

This update is done in the predicted sample x̂0 of each step of
the reverse process, derived from the predicted noise ε̂ according
to the formula x̂0 = (xt −

√
1− ᾱtε̂)/

√
ᾱt. We use an overlap

of Tol = 32 frames, corresponding to 0.64 seconds of audio.
Borrowed from motion generation [19], [20], this is an effective
and convenient approach, performed solely at the sampling
stage, requiring no additional training components, contrary to
Hawthorne et al. [17].

B. Acoustic Consistency

Smooth transitions enabled by the proposed interpolation
do not guarantee consistent timbre, as timbre could still drift
smoothly between segments, as is demonstrated on our project
page. As can be observed in the samples, version conditioning
is an effective way to address this issue, as it implicitly creates
acoustic consistency and stability between segments.

VI. EVALUATION

In this section, we discuss the evaluation of our proposed
DDPM-based synthesizer. In Section VI-A we define the de-
sired properties of a high-quality synthesizer and explain the
general criteria and methods for evaluation. In Section VI-B we
present the datasets used for evaluation. In Section VI-D we
present the qualitative listening tests we have performed for
evaluating the model. In sections VI-E and VI-F we present
quantitative results using score metrics based on the Fréchet
Audio Distance (FAD) [24], and transcription metrics.

A. Evaluation Criteria

A high-quality synthesizer should possess both high genera-
tive power on the one hand, and elaborate control on the other
hand, while producing high-quality realistic sound. This can be
broken down into the following required properties:

a) Realism & Quality: The synthesizer should generate realis-
tic and high-quality sound. Ideally, the generated performances
should be indistinguishable from real musical performances, i.e.,
pass the Turing Test [37].

b) Score Control: This involves the played notes or pitches,
instruments, and timing, including note onset and offset. Notice
that note onset and offset timing are also related to performance
control, as discussed below.

c) Acoustic Control: This involves the specific instrument
timbre (e.g., which type of violin), room acoustics, location of
listener or microphone relative to the orchestra, orchestra size,
and so on.

d) Performance Control: This encompasses aspects such as
note intensity or strength (also referred to in the literature as the
velocity in which the instrument was struck), degree of vibrato

or tremolo, and more. Also, expressive interpretation of note
timing can be regarded as a part of performance aspects.

e) Generating Unspecified Aspects: While control over
the aforementioned aspects (score, acoustics, performance) is
highly desirable, it is also required that the model can realisti-
cally generate aspects or confounding factors unspecified by the
user, facilitating the generation process. This is required since
many aspects of control, especially performance controls, such
as vibrato and velocity, can be extremely laborious to define,
and require highly skilled musicians. This also enables further
flexibility, allowing to generate multi-instrument performances
from partial conditions such as pitch-only input without specify-
ing instrumentation, or performances with drums from a musical
score without drums, as is demonstrated on our project page.

In this work we focus on realism and quality, score control,
and acoustic control. We rely on the model to implicitly generate
performance aspects such as vibrato and intensity. Examples
can be found on our project page demonstrating the ability
of the model to generate such aspects, e.g., a violin playing
with vibrato. We argue that explicit performance control in a
data-driven approach requires the transcriptions to contain this
information, and leave this for future work.

To evaluate realism and quality, in Section VI-D-1 we conduct
a MUSHRA listening test [38] comparing performances of the
same musical excerpts generated on various synthesizers, both
concatenative and diffusion-based, with and without version
conditioning, as well as real versions, both original and vocoded.

Furthermore, to evaluate acoustic control, in Section VI-D-2
we conduct an additional listening test to measure the effect of
version conditioning in achieving the target acoustics, to which
we refer to as version similarity.

In Section VI-E we complement the qualitative listening tests
with quantitative perceptual metrics based on the Fréchet Audio
Distance (FAD). We introduce two ways of measuring the FAD:
All-FAD to measure realism and quality, and Group-FAD to
measure version similarity. Finally, in Section VI-F, to evaluate
score control, we apply quantitative transcription metrics to
evaluate the faithfulness of our generated performances to the
target notes and instruments.

As explained in Section IV-B-1, we present here results from a
model trained with automatic transcriptions as score conditions
due to its higher practicality. We provide quantitative and quali-
tative results for the model trained with aligned MIDI scores in
the Appendix2 and on our project page.

B. Datasets

1) Train Set: We train our model on 197 performances of
Western classical music, including symphonies, chamber mu-
sic, and solo pieces, comprising 19 instruments, and totaling
58:25:47 hours. The total duration and the number of versions
for each ensemble are shown in Table II. The data consists of per-
formances from YouTube3 and Musopen,4 with corresponding
MIDI transcriptions from KunstDerFuge,5 aligned as proposed

3https://www.youtube.com
4https://musopen.org
5https://www.kunstderfuge.com
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TABLE II
ENSEMBLE DISTRIBUTION OF THE TRAIN SET Dtrain, INCLUDING THE TOTAL

DURATION FOR EACH ENSEMBLE GIVEN IN H:MM:SS, AND THE NUMBER OF

VERSIONS EXISTING FOR EACH ENSEMBLE

by Maman and Bermano [22]. Following the same work, we
augment the data by pitch-shifting up to ±2 semitones (larger
ranges of shifts did not improve performance). We label the data
with version condition IDs by assigning numerical indices to the
different performances, where typically the same index is given
to an entire set of recordings (e.g., a CD box with Beethoven’s
Piano Trios recorded by the same ensemble in the same studio).
For church organ performances, where different organ registers
are used in different audio tracks, resulting in significant timbre
differences, we assign an individual version ID for each track.
For the distribution of version lengths for each ensemble we refer
to the Appendix2 available on our project page. It can be seen that
version lengths vary between a few minutes (e.g., guitar or organ)
and a few hours (e.g., violin & piano duo). As we show in the
following, version conditioning enables version control despite
possible imbalance in version durations. Samples on the project
page demonstrate the ability to successfully condition the model
on recordings of a few minutes—the guitar and organ versions,
as well as the orchestral version “Czech Symphony Orchestra
playing Beethoven’s Coriolan Overture” on the project page
each contain less than ten minutes. For further information on the
data collection process, including the distribution of composers,
see Appendix. We denote this dataset Dtrain.

2) Listening Tests Evaluation Set: For the listening tests,
we use 12 MIDI performances of Western classical pieces,
none of which appear in the train set, but containing the same
instruments as in Dtrain. The pieces include orchestral music,
wind quintet, church organ, and harpsichord pieces. We use
the first 3:00 minutes of each MIDI performance, which yields
a total duration of 36:00 minutes. Short excerpts used for the
listening tests were drawn randomly from these performances.
As references for comparison, for each MIDI performance we
use a corresponding real musical performance of the same score,
of the same instrumentation, but of a version that does not appear
in Dtrain. See Appendix for the list of pieces in this dataset. We
denote this dataset Dlisten.

3) Large Quantitative Evaluation Set: We quantitatively eval-
uate our models with 58 MIDI performances of Western classical

pieces of a total duration of 5:09:30 hours, none of which
appear in the train set, but containing the same instruments
as in Dtrain. For each test MIDI, we randomly sample three
version conditions for synthesis. For example, the test MIDI can
be a performance of Mozart’s 40th symphony, and the version
condition can be the performance of the Berlin Philharmonic
Orchestra playing Brahms’ Haydn Variations. This is the same
evaluation set used by Maman et al. [21]. See Appendix for
the ensemble distribution of this dataset. We denote this dataset
Dquant.

C. Training & Sampling

We use a T5 backbone similar to the “base” model used
by Hawthorne et al. [17], extending it with FiLM layers for
conditioning on the version. The model has 12 layers in the
encoder and decoder, with 12 attention heads of dimension 64
each, resulting in 768 feature dimensions. For the attention layers
we use 2048 feedforward dimensions. We trained the model with
batch size 312 using five-second segments, for 300K steps. This
took approximately 350 hours on three Nvidia A100 GPUs. We
used an Adam [39] optimizer with learning rate 1e-4, reducing
the learning rate to 1e-5 for the last 30K steps. For details on the
U-Net see Appendix.

We train the model with 1000 diffusion timesteps, using a
cosine noise schedule [40]. We perform DDIM [41] sampling
of five-second segments using 250 steps. To control the condi-
tion strength, we use classifier-free guidance (CFG) [42] with
weights 1.25 for both the score and the version. For further
information on CFG with multiple conditions, see Appendix.

D. Evaluation Based on Listening Tests

We performed two distinct listening tests, to evaluate both
realism (Section VI-D-1) and similarity to the target version
(Section VI-D-2). Both listening tests are publicly available on
our project’s listening test page6.

1) Realism Listening Test: In this listening test, we aim to
evaluate to what degree our generated performances resemble
real musical performances, as opposed to synthesized ones. Ide-
ally, generated performances should be indistinguishable from
authentic recordings. For this, we follow an adaptation of the
MUSHRA (Multiple Hidden Stimuli with Hidden Reference
and Anchor) protocol [38] to evaluate realism of generated
performances.

MUSHRA is a protocol for assessing audio quality, originally
created for evaluating audio compression. Typically, the same
excerpt is provided multiple times, restored with different codecs
or algorithms. Each comparison of excerpts contains both a
reference sample and one or more anchor samples. The reference
represents the ideal quality, i.e., no compression is applied. The
anchors represent baselines, against which different methods
can be compared, and are used to calibrate the rating scale. The
listener is provided with the reference sample and the set of
samples for evaluation, also including a hidden version of the
reference sample. The listener is asked to rate all samples on a

6https://benadar293.github.io/listening-tests

https://benadar293.github.io/listening-tests
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scale from 0 to 100, and is required to rate the hidden reference
with a score 90-100 (depending on the standard that is used). The
MUSHRA protocol is considered robust, enabling statistically
meaningful results with relatively few participants.

We apply the same methodology to evaluate the realism of
our generated performances. Specifically, we want to find out
if and to what extent the generated performance sounds like
a real musical performance, as opposed to one performed on
a synthesizer. The listeners are presented with an audio excerpt
from a real musical performance as a reference, which represents
ideal realism, and multiple synthesized versions of the same
score content appearing in the excerpt, using different models or
methods. As lower anchors we use synthesized versions obtained
by concatenative synthesis, using two different soundfonts: The
standard Windows Media Player GM soundfont, and the Fluid
Release 3 General-MIDI soundfont, which is of higher quality.
Concatenative synthesis serves as a baseline for achievable
realism. We also include the vocoded version of the reference,
in order to isolate the influence on realism of the vocoder
from the spectrogram synthesizer. The vocoded version was
obtained by calculating the mel-spectrogram of the reference
sample and restoring the audio with the same vocoder we use
for synthesis. Note that the vocoder quality is an upper bound
on the quality achievable by our method. We compare excerpts
of the same score content generated by the following neural
synthesizers:

1) The original T5 model of Hawthorne et al. [17], which
was trained mainly on data produced by a concatenative
synthesizer, without version conditioning.

2) Our T5 model trained on our dataset, without version
conditioning.

3) Our T5 model trained on our dataset, with version condi-
tioning.

Note that the latter three configurations are all based on the
same architecture. The differences are the type of data, real or
synthetic, and whether or not version conditioning is used.

In total, seven versions were compared in each question:
Two from concatenative synthesizers, three from neural syn-
thesizers, the vocoded version, and the hidden reference. The
seven versions were presented in random order. We asked the
listeners to rate the realism of each excerpt from 0 (unrealistic)
to 100 (realistic) and informed the listener that there is a hidden
reference that must be ranked close to 100. The listener had to
rate the reference with a score above 90 more than 85% of the
time, otherwise the questionnaire was discarded.

The test comprised 32 participants, five of whom were dis-
carded, leaving 27 participants. The questionnaire included ten
questions. In each question, a twelve-second random excerpt
was drawn from a MIDI sampled from Dlisten, and sonified in
the seven aforementioned variations (concatenative synthesiz-
ers, diffusion model, vocoder, etc.). The reference excerpt was
obtained from a real performance of the same piece as the MIDI,
through automatic alignment, which was manually verified to
ensure it contained the same content. The test was conducted
using the webMUSHRA implementation by the webMUSHRA
implementation [43].

Results can be seen in Fig. 5 and Table III. It is evident that
our model trained on real performances produces more realistic

Fig. 5. MUSHRA realism listening test results in box plot form. For the exact
Mean Opinion Scores (MOS) appearing in this figure, see Table III. ‘GM’ and
‘Fluid’ are soundfonts used for concatenative synthesis. ‘Hawth.’ is the model
of Hawthorne et al. [17]. ‘Uncond.’ is our model without version conditiong (but
with score conditioning). ‘Cond.’ is our model with both version conditioning
and score conditioning. ‘Vocoded’ is the reference sample, after applying the
vocoder to its mel-spectrogram, and is an upper bound on the achievable realism.
It can be seen that both our models (‘Cond.’ and ‘Uncond.’) produce significantly
more realistic performances than all compared models and methods.

TABLE III
REALISM MUSHRA LISTENING TEST MEAN OPINION SCORES (MOS)

results than all the baselines—both concatenative synthesizers
(GM, Fluid), and the model of Hawthorne et al. [17], by a
significant margin. This holds whether or not using version
conditioning. For example, the basic concatenative synthesizer
(GM) obtains 24.0 MOS in realism, where our model with
version conditioning obtains 52.1 MOS. Our model also sur-
passes the more advanced concatenative synthesizer (Fluid),
improving MOS from 44.5 to 52.1. Noteably, although we use
the same architecture as Hawthorne et al. [17], the difference
in realism is significant—over 20 MOS difference, from 30.7 to
52.1, due to the difference in training data. Also note that gen-
erating with or without version conditioning yields comparable
realism scores, where version conditioning slightly improves
MOS from 48.4 to 52.1. We note in this context that version
conditioning mainly influences version similarity, discussed in
Section VI-D-2. Lastly, note that the vocoder quality has a
non-negligible effect on the final result, as merely restoring the
audio from the mel-spectrogram with the vocoder reduces the
score from 99.0 to 86.2.

We conclude from these results that using real musical per-
formances in a diffusion-based approach for music synthesis
significantly improves realism compared to data based on tradi-
tional (concatenative) synthesis.
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Fig. 6. Similarity listening test results. We synthesize the same score excerpt
using our model, with three different version conditions, which are of perfor-
mances with the same instrumentation. One of the three serves as a reference
version. We ask the user to rate the similarity of each of the synthesized excerpts
to a random excerpt of different score content, sampled from the reference ver-
sion. Left (‘Other’): Similarity to the reference version of excerpts synthesized
with version conditions other than the reference version. Right (‘Reference’):
Similarity to the reference version of excerpts synthesized with the reference
version condition.

2) Version Similarity Listening Test: In this listening test, we
are interested in evaluating if and to what extent our generated
performances perceptually resemble the reference version used
for conditioning, in terms of acoustics, timbre, performance,
style, etc. For example, if generating an organ piece with a
version condition of a specific organ, we want to evaluate to
what extent the organ in the generated performance sounds like
the organ given in the reference version.

In this listening test, for each comparison we randomly sample
a reference audio excerpt aref with version vref and score sref

from Dtrain. We sonify a short score excerpt s (in MIDI form, of
different content than the reference sref) three times, once with
the same version condition vref corresponding to the reference,
and with two additional randomly sampled version conditions
v1, v2, of the same instrumentation as vref. We denote the outputs
of the model by asref, a

s
1, a

s
2. For example, following Fig. 4,

our reference (aref, vref, sref) is Toscanini’s performance of
Beethoven’s 5th Symphony. As a score condition s we use an
excerpt from Brahms’ 4th Symphony, which we sonify with the
reference version condition vref being Toscanini’s performance
of Beethoven’s 5th Symphony, and additional version conditions
v1, v2 being Karajan’s performance of Brahms’ 2nd Symphony,
and Barenboim’s performance of Mozart’s 41st Symphony. For
the corresponding synthesized excerpts asref, a

s
1, a

s
2, we ask the

user to rate the similarity of each to the reference excerpt aref,
on a scale from 0 to 100. The similarity test comprised 26
participants and included ten questions. For each question, we
sampled a random twelve-second excerpt from a MIDI sampled
fromDlisten, and sonified it with the three aforementioned version
conditions, comparing them to the reference excerpt.

Results appear in Fig. 6. In the left part, it can be seen that
version similarity scores improve significantly by conditioning
on the reference version, compared to conditioning on other
versions, even though they are of the same instrumentation.
The improvement is over 20 in the MOS, from 51.7 to 72.0
on average.

These results show that the notion of version similar-
ity, reflected in perceptual and acoustic similarity, is indeed
meaningful, and such similarity can be achieved by using
version conditioning. The results clearly indicate that version
conditioning is an effective means to obtain version-specific
characteristics, e.g., specific timbre or acoustics that appear in a
target version.

E. Quantitative Evaluation Using Fréchet Audio Distance

We complement the listening tests with a quantitative evalua-
tion using the Fréchet Audio Distance (FAD) [24]—a perceptual
score with origins in computer vision [44]. We use this metric
in different ways to quantitatively evaluate realism and quality
(Section VI-E-1), and version similarity, i.e., the resemblance
of our generated performances to the conditioning version (Sec-
tion VI-E-2).

FAD relies on large models based on deep neural networks,
such as TRILL [45], trained on large real-world datasets to
predict embedding vectors from snippets of input audio. The as-
sumption is that perceptually similar audio snippets yield closely
spaced embedding vectors. To compute FAD between two audio
datasets D1, D2 (e.g., a set D1 of synthesized audio conditioned
on a specific version, and a set D2 of real recordings of the same
version), the mean vectors μ1, μ2 and the covariance matrices
Σ1, Σ2 are computed over all embedding vectors generated from
D1 and D2, respectively. The FAD is then defined as:

FAD(D1,D2) = |μ1 − μ2|2 + tr
(
Σ1 +Σ2 − 2(Σ1Σ2)

1/2
)
.

(9)
Intuitively, if D1, D2 are perceptually similar, the distributions
of the model’s responses over the two datasets should be similar,
resulting in a small distance. Kilgour et al. [24] show that FAD
correlates with human perception and that increasing distortions
increase the FAD. The results we present in the following sec-
tions further confirm this, as we show that qualitative listening
test results are consistent with FAD scores.

We use two models as backbones for FAD, also used by
Hawthorne et al. [17] for evaluation: TRILL [45] (5.9 embed-
dings/sec.), and VGGish [46] (1 embedding/sec.). We measure
FAD in two ways, differing in the choice of the compared
datasets: All-FAD for realism and quality (Section VI-E-1), and
Group-FAD for version similarity (Section VI-E-2).

We report quantitative metrics for the generated performances
used in the listening tests, and show they are consistent with
the qualitative listening tests’ results. For statistical stability,
the metrics were measured on the entire Dlisten evaluation set
from which excerpts in the listening tests were sampled. In
addition, for further statistical stability, we measure quantitative
metrics on the large scale 5-hour evaluation set Dquant described
in Section VI-B, also used by Maman et al. [21], and compare
generation with and without version conditioning.

1) All-FAD—Realism & Quality: To assess realism, quality,
and fidelity, we use FAD comparing the entire synthesized
evaluation set to the entire train set. In the terms of (9), we
define D1 = fθ(Dmidi

listen), where fθ(Dmidi
listen) denotes our DDPM-

based synthesizer fθ applied to the set of MIDIs in Dlisten, and
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TABLE IV
RESULTS OF THE ALL-FAD METRIC FOR LISTENING TEST PERFORMANCES

D2 = Daudio
train , where Daudio

train denotes the audio recordings in the
train set Dtrain. Note that Dmidi

listen can also be replaced by Dquant.
Also note thatDtrain, Dlisten contain both audio and scores, while
Dquant contains only scores.

This captures the general similarity of the synthesized per-
formances to real performances (or more specifically, to the
entire set of real performances used for training), rather than
resemblance to a specific version. We refer to this metric as
All-FAD. While this metric is important for measuring realism
and quality, note that the main quantitative metrics for evaluat-
ing version conditioning are the Group-FAD and classification
accuracy metrics discussed later.

Results for the All-FAD metric appear in Table IV (lower is
better). It can be seen that using real training data significantly
improves All-FAD w.r.t. all baselines, whether or not using ver-
sion conditioning (Cond., Uncond.). For example, the All-FAD
based on VGGish is over 10.0 for concatenative synthesizers and
7.7 for the model of Hawthorne et al. [17]. It improves to 4.03
(Uncond.) or 4.81 (Cond.) when using our model. This is consis-
tent with the realism listening test results (Fig. 5, Table III). Note
that the reference data Daudio

listen (Real), i.e., the audio from Dlisten,
achieves the best All-FAD scores (i.e., setting D1 = Daudio

listen and
D2 = Daudio

train in (9)), despite being from versions not appearing
in the train set. This implies that the All-FAD metric indeed
reflects realism and quality, beyond mere similarity to the train
set.

Results on the large evaluation set Dquant show that version
conditioning does not significantly affect All-FAD, implying
that general quality is maintained. We also observe that version
conditioning might slightly increase the All-FAD. This can be in-
terpreted as follows: Version conditioning shifts the distribution
of the generated performances from the general distribution of
the train setDtrain, towards the distribution of specific versions,
as explained in Section VI-E-2.

2) Group-Fad: To measure version similarity, i.e., how well
generated performances resemble the target conditioning ver-
sion, we introduce the Group-FAD metric. To motivate its use,
we show in Fig. 7 a t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) visualization [47] from the train set’s TRILL em-
bedding distribution. Each point represents the mean embedding
of an audio track (e.g., a movement in a symphony), and each
color represents a recording, comprising multiple such tracks,
corresponding to a specific version. It can be seen that tracks

Fig. 7. T-SNE Visualization of the TRILL embedding space. Points represent
audio tracks, and colors represent complete recordings of specific version IDs,
comprising multiple such tracks.

TABLE V
RESULTS OF THE GROUP-FAD METRIC, FOR LISTENING TEST PERFORMANCES

TABLE VI
RESULTS OF VERSION CLASSIFICATION BASED ON GROUP-FAD, FOR

LISTENING TEST PERFORMANCES

of the same version form clusters. Following this insight, we
define the Group-FAD metric: To measure how well our version-
conditioned synthesized performances resemble the target ver-
sion in acoustics, timbre, etc., we compute FAD comparing each
score s synthesized with a version condition v, to the subset of
the training set recordings corresponding to v, which we denote
Daudio

v . In the terms of (9), we define D1 = fθ(s, v), where fθ
denotes our DDPM-based synthesizer, and D2 = Daudio

v .
Group-FAD results appear in Table V. It can be seen that

version conditioning dramatically and consistently improves
Group-FAD, both compared to the baselines, and compared to
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our model without version conditioning. Note for example, that
Group-FAD based on VGGish improves from 7.61 when using
our model without version conditioning, to 5.15 when using our
model with version conditioning. Notably, when using version
conditioning, Group-FAD is better than that of the real samples
Daudio

listen playing the same score but of another version (Real). For
example, the TRILL-based Group-FAD for the real samples is
0.44, and improves to 0.3 for our version-conditioned samples
(as explained in Section VI-D-1, the reference samples Daudio

listen
are from real performances of the test MIDIs, of versions that
do not appear in the train set). Results are consistent between
VGGish and TRILL, and are consistent with the version sim-
ilarity listening test (Section VI-D-2), indicating perceptual
similarity to the target version obtained by version conditioning.

3) Version Classification: We further use the Group-FAD
metric to classify the version of generated performances ac-
cording to the Group-FAD nearest neighbor, over all training
versions. In an initial experiment on version classification of real
recordings, TRILL was more accurate than VGGish, therefore
we use TRILL for version classification of generated perfor-
mances.

Results are shown in Table VI. Note, for example, that version
conditioning (Cond.) improves version classification accuracy
by 35-60%. The improvement is dramatic both compared to
performances generated w/o version conditioning (Uncond.),
and also compared to real performances (Real)—from 18.2%
and 45.5% respectively to 81.8%.

F. Score Control Evaluation Using Transcription Metrics

In this experiment, we quantitatively evaluate whether our
DDPM-based model accurately renders the score as specified
by the input score (given as MIDI representation). To this
end, we use transcription metrics to determine if the generated
performances contain the correct notes at the correct times,
played by the correct instruments. We assess the transcription
accuracy of the synthesized performances using an automatic
transcriber [22], [25], trained on the same data as the synthesizer.
We compare the note events in the input score to those in the
transcription of the synthesized performance, and measure the
F1 score for the following:
� Note: Accuracy of pitch and onset within 50 ms.
� Note-with-Instrument: Accuracy of pitch, onset within

50 ms, and correct instrument.
� Frame: Accuracy of note duration.
Results appear in Table VII. It can be seen that all methods pro-

duce transcription metrics that are on a rather comparable scale,
except for the note-with-instrument metric. Our model (Cond.,
Uncond.) reaches a note-level accuracy of ∼65–67%, which is
of reasonable magnitude when considering the complexity of
highly polyphonic orchestral music. Note that the transcription
metrics are influenced not only by the synthesizer’s quality but
also by the transcriber. The transcriber was trained on the same
data as the synthesizer, and therefore might not perform as well
on data generated by other synthesizers. Results on the large
evaluation set show comparable transcription accuracy whether
or not using version conditioning, similar to the All-FAD metric.

TABLE VII
TRANSCRIPTION RESULTS, FOR LISTENING TEST PERFORMANCES (’NOTE+IN.’

IS THE NOTE-WITH-INSTRUMENT METRIC)

In the qualitative listening tests (Sections VI-D-1, VI-D-2),
we focus on realism and version similarity, and not on score con-
trol. Although we provide quantitative results for score control,
further listening tests for this aspect are an important direction
for future work.

VII. CONCLUSIONS AND FUTURE WORK

We presented a framework for training neural diffusion-based
synthesizers on real uncurated musical performances with di-
verse acoustics and instrumentation, including orchestral sym-
phonies. Our proposed approach is based on diffusion mod-
els with multi-aspect conditioning, on both score and version.
Through qualitative listening tests and quantitative evaluations,
we have demonstrated that our approach produces performances
with improved realism, and provides novel acoustic control,
enabling to generate performances with version-specific char-
acteristics, such as timbre and room acoustics. We strongly
believe our approach is a significant step towards hyper-realistic
and controlled music synthesis. Aside from extension to other
genres, such as jazz, ethnic, and pop music, there are several
important directions for future work, a few of which we outline:

1) Instrumentation Generation

Initial results provided on our project page demonstrate
the ability to generate instrumentation from pitch-only in-
put, implicitly controlling instrumentation through version-
conditioning. Further investigation of this matter is an important
direction for future work.

2) Unseen Versions

Our model can generate performances of unseen scores, with
versions from the train set. Adapting a model to new unseen
versions through inference from an example excerpt, or test-time
adaptation, is highly desirable. Initial results on our project
page indicate that conditioning on the version using TRILL
embeddings is an effective means for handling unseen versions,
at least for known instruments. We plan to further investigate
this in future work.

3) Version Embedding Space & Interpolation

We provide on our project page samples for performances
generated by interpolating between different versions using
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different techniques—both interpolating between predictions,
and interpolating between the learned version embeddings. In-
terpolating between versions relates to learning a structured and
meaningful version embedding space, which is highly desired,
and also to handling unseen versions, mentioned above. A
thorough investigation of this matter is left for future work.

4) Human Singing Voice & Lyrics Conditioning

While in this work we focus on instrumental music, we be-
lieve a unified diffusion-based framework for music and human
speech is possible. In particular, we believe our approach could
be applied to human singing voice synthesis, by applying similar
additional conditioning techniques on lyrics or phonemes, and
singer or speaker ID.

5) Elaborate Performance Control

In this work, we rely on the model to generate performance
aspects such as note intensity and vibrato. Adding conditions for
such performance aspects will enhance control, but will require
enhancement of the transcriptions to comprise these aspects,
which is a field of ongoing research.

6) Other Spectral Representations

In this work, we focus on mel-spectrogram synthesis and use
a vocoder to convert the spectrogram to audio. We believe our
approach can be applied to other spectral representations such
as the magnitude-STFT or even the complex STFT, with higher
computational costs.
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