
Cross-Modal Approaches to
Beat Tracking: A Case Study
on Chopin Mazurkas

CHING-YU CHIU

LELE LIU

CHRISTOF WEIß

MEINARD MÜLLER

*Author affiliations can be found in the back matter of this article

ABSTRACT
Within music information retrieval (MIR) research, numerous beat-tracking systems
have been developed, targeting either audio recordings or symbolic representations
such as MIDI files. However, the differences between these approaches, their respec-
tive strengths and weaknesses, and the potential for combining them have received
limited attention. In this article, we compare two conceptually different beat track-
ers: an audio-basedmodel that operates frame by frame and a symbolic-basedmodel
using an event-driven approach. Specifically, we analyze the performance of two
pretrained systems: the audio beat tracker madmom and the symbolic beat tracker
Performance MIDI-to-Score (PM2S). Our evaluation is based on a cross-modal dataset
of Chopin’s Mazurkas (Maz-5), which includes multiple audio recordings and MIDI rep-
resentations automatically transcribed fromaudio. As a key contribution, we standard-
ize the post-processing pipelines for the frame-based and event-based beat trackers to
ensure comparability and explore various late-fusionmethodswithin a unifying frame-
work. Our results highlight the effectiveness of these fusion strategies in leveraging the
strengths of both modalities while providing valuable insights into the performance of
existing beat-tracking models.
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1 INTRODUCTION

Given a piece of music, the goal of beat tracking is to
find the time positions humans would tap along with
while listening. Existing beat-tracking systems generally
consist of two parts, an activity estimator and a post-
processor. The activity estimator is usually a feature
learning network, which processes the input represen-
tation and generates an activation function, indicating
the likelihood or pseudo-probability of each time posi-
tion to be a beat or not. The post-processor is typically a
dynamic programming-based model that takes the acti-
vation function and determines beat positions through
optimization. On the basis of the input representation,
existing beat-tracking systems can be categorized as
audio beat trackers, which take as input an audio repre-
sentation (Böck and Davies, 2020; Fuentes et al., 2018),
or symbolic beat trackers (SBTs), which take as input a
symbolic representation (Chuang and Su, 2020; Liu et al.,
2022). While both audio and symbolic beat trackers aim
to detect the underlying beat structure of music, their
differing input representations lead to distinct mech-
anisms. Audio-based approaches focus on recovering
onset information hidden in frame-based input represen-
tations, while symbolic approaches, which have access to
explicit onset information encoded in event-based rep-
resentations, can concentrate on higher-level metrical
aspects. As shown in Figure 1, given a piece of music,
the audio waveform and symbolic MIDI file encode
the music in different formats, leading to beat activa-
tion estimation approaches based on different principles.
The audio waveforms encode both strong and subtle
changes in amplitude and frequency, which the audio
activity estimator uses to identify relevant note events.
In contrast, symbolic MIDI files explicitly specify note
event timing, allowing the symbolic activity estimator to
focus directly on these specific positions. The differences
mentioned above may lead to distinct model behav-
iors, yet few studies investigate these and their potential
complementarity.

Froma higher-level viewpoint, beat-tracking errors can
be attributed to both data-related factors (e.g., musical
properties determined by the music scores or physical
properties of specific performances (Grosche et al., 2010))
andmodel-related factors (e.g., the decisionmechanisms
of the activity estimators or the assumptions involved in
thepost-processors). Thechoiceofevaluationmetrics can
alsobiasobservationsof themodel’s truebehavior.¹With-
out systematic control of these factors, the insights we
can derive from experiments may be limited. For exam-
ple, despite the fact that existing works generally report
beat-tracking F1 scores; correct metrical level, with the
total of continuous segments (CMLt); and allowed met-
rical level, with the total of continuous segments (AMLt)
(Davies et al., 2009) for various datasets (Chang and Su,
2024; Cheng and Goto, 2023; Hung et al., 2022; Pinto

et al., 2021; Zhao et al., 2022), their reliance on the
dynamic Bayesian network (DBN) built into madmom (Böck
et al., 2016a) or similar approaches (Yamamoto, 2021)
imposes strong tempo assumptions, limiting our under-
standingofwhat their neural-network-basedactivity esti-
mators truly learn. F1 scores, CMLt, and AMLt also do not
allow us to progressively evaluate how well the mod-
els handle longermusical contexts. Although researchers
have recently recognized the influence of post-processors
and purposely adopted peak-picking-based methods
(Chiu et al., 2023; Foscarin et al., 2024) without strong
assumptions, the impact of peak-picking thresholds in
combination with the overall amplitudes of activation
functions has rarely been investigated in detail. Moreover,
despite thereleaseandadoptionof theAlignedScoresand
Performances (ASAP) for the piano transcription dataset
(Foscarin et al., 2020), which provides a comprehensive
understanding of the limitations of existing deep learn-
ing (DL)-based methods in the context of classical piano
music analysis, the musical complexities in the dataset
also hinder our understanding of model failures (Chiu
et al., 2023; Foscarin et al., 2024).

Considering the issues mentioned above, the goal
of this article is to investigate and analyze both sym-
bolic and audio beat trackers, with a better control of
factors related to data and models. To the best of our
knowledge, the only existing work that compares the two
modalities is by Schwarzhuber (2024). However, despite
conducting comprehensive experiments regarding net-
work architectures and various input representations, the
insights in the work by Schwarzhuber (2024) are also lim-
ited by the abovementioned factors: adoption of post-
processors with strong assumptions (i.e., DBN and rule-
based method by Liu et al. (2022)) and limited reported
evaluation metrics (i.e., only F1 scores without report-
ing or discussing precision, recall, or other evaluation
metrics). Additionally, there are two types of input data
representations used in the beat trackers: spectrograms
with evenly distributed time stamps along the time
axis (referred to as “frame-based representation”) and
event sequences with unevenly distributed time stamps
(referred to as “event-based representation”). For both
representations, there are corresponding post-processors
with very different assumptions, complicating the com-
parison.

In contrast to existing works, we address the
aforementioned factors by establishing a unified post-
processing pipeline to better understand and directly
compare the properties of activation functions without
altering them significantly, and to derive beat estima-
tions without imposing strong assumptions beyond the
mechanisms within the activity estimators. We focus
on a cross-version dataset of five Chopin Mazurkas
(Sapp, 2007; 2008) featuring expressive tempo changes
(Schreiber et al., 2020; Shi, 2021) anda variety of specified
musical properties, including non-event beats, boundary
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Figure 1 Beat activity estimation of an audio representation using a frame-based approach (left) and a symbolic representation using
an event-based approach (right).

beats, ornamented beats, constant harmony beats, and
weak bass beats that complicate beat tracking (Grosche
et al., 2010).² Furthermore, we propose representation
conversion methods combined with various fusion tech-
niques to explore potential ways to leverage the com-
plementarity between audio and symbolic modalities.
We start with existing pre-trained models: madmom (Böck
et al., 2016a,b) as a frame-based audio beat tracker
and PM2S (Liu et al., 2022) as an event-based symbolic
beat tracker. More specifically, the madmom activity esti-
mator employs a Bidirectional Long Short-Term Memory
(BiLSTM) network to process audio spectrograms and
generate frame-based activations (as shown in Figure 1,
left bottom), while PM2S uses a convolutional recurrent
neural network (CRNN) to process MIDI note sequences
and generates event-based activations (as shown in
Figure 1, right bottom). We also retrain the BiLSTM and
CRNN using the five Mazurkas (Maz-5) to further investi-
gate the capability of these models to adapt to a specific
music scenario and to validate the effectiveness of vari-
ous late-fusion methods.

Figure 2 provides a conceptual overview of our
cross-modal approach, featuring two branches: the
audio/frame-based branch (left) and the symbolic/event-
based branch (right). Specifically, in the case of a frame-
based audio beat tracker (Figure 2, left), the audio wave-
form from a recording is converted to a frame-based
feature representation XA (e.g., a spectrogram) and pro-
cessed by an audio activity estimator (purple square)
to derive the audio activations ΔA. A frame-based post-
processor (green square) then converts the activationsΔA into beat estimations. Similarly, in the case of an
event-based symbolic beat tracker (Figure 2, right), a
sequence of event tuples XS, obtained from a sym-
bolic representation (e.g., a MIDI file), is processed by a

symbolic activity estimator (purple square) to derive the
corresponding symbolic activations ΓS. An event-based
post-processor (green square) then converts the sym-
bolic activations ΓS into beat estimations. In principle, as
indicated in Figure 2, one may leverage frame-to-event
(F2E) and event-to-frame (E2F) conversion to bridge the
two modalities and explore various fusion methods (blue
squares) in both representations, including frame-based
and event-based fusion.³ In this paper, we focus on the
frame-based representation (left)4 and establish a frame-
based unified post-processing pipeline (green square) to
handle activations from all modalities (i.e., audio, sym-
bolic, and late fusion) consistently, converting them into
beat estimations for further analysis.

The remainder of this paper is organized as follows: In
Section 2, we introduce the dataset of Chopin Mazurkas
(Maz-5) and our experimental scenarios. In Section 3,
we present the mathematical definitions and notations
for existing beat-tracking methods of different modali-
ties. In Section 4, we describe the representation con-
version methods. In Section 5, we outline the unified
post-processing pipeline and the peak-picking method
considered. Then, in Section 6, we present the experi-
ment results. In Section 7, we extend the experiment to
downbeat tracking and discuss the preliminary results.
Finally, we conclude this article in Section 8. We provide
the Python source code and supplementary discussions
for this paper at GitHub repository: https://github.com/Su
nnyCYC/CrossModalBeat.

2 SCENARIO: CHOPIN MAZURKAS

The dataset for our experiments consists of five Chopin
Mazurkas (Maz-5), selected from the Mazurka Project’s
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Figure 2 Overview of the system. F2E: frame-to-event conversion; E2F: event-to-frame conversion.

ID Piece Number
(Beats)

Number
(Perf.)

Dur. (h)

M17-4 Op. 17, No. 4 396 64 4.62

M24-2 Op. 24, No. 2 360 64 2.44

M30-2 Op. 30, No. 2 193 34 0.80

M63-3 Op. 63, No. 3 229 88 3.15

M68-3 Op. 68, No. 3 181 51 1.43

Table 1 The five Chopin Mazurkas and their identifiers used
in our study. The last three columns indicate the number of
beats, performances, and total duration (in hours) available for
the respective piece. Dur.: duration; h: hours; ID: identifier; Perf.:
performances; Op.: Opus.

collection of 49 Mazurkas.5 For each of the five Mazurkas,
Sapp (2007; 2008) manually annotated beat and down-
beat positions in 34–88 audio recordings of real perfor-
mances (Table 1). As a piano dataset featuring expressive
tempo changes (e.g., rubato or ritardando), Maz-5 is typ-
ically used for analysis of beat-tracking errors (Grosche
et al., 2010), local tempo (Schreiber et al., 2020), or
expressive timing (Shi, 2021). Moreover, the cross-version
scenario (i.e., having multiple recorded performances for
each of the Mazurkas) of Maz-5 allows us to separate

musical factors (e.g., musical complexities determined
by scores) and physical factors (e.g., audio quality or
interpretations of pianists) for beat tracking to gain more
insights. Although no performance MIDI files exist for the
301 recordings, recent advances in DL-based piano tran-
scription enable the creation of MIDI files with sufficient
quality for further analysis (e.g., for beat tracking) and to
serve as symbolic input representations. For our experi-
ments, we use the transcriber by Kong et al. (2021) to
derive MIDI files (without further manual correction). In
Section 6, we present the insights gained from these key
features of Maz-5.

3 BEAT TRACKING IN DIFFERENT
MODALITIES

In this section, we present the key concepts, terminology,
and mathematical definitions related to audio and sym-
bolic beat-tracking methods.

3.1 AUDIO BEAT TRACKERS
Commonly, an audio beat tracker (ABT) takes as
input a spectrogram-like time–frequency representation
(e.g., a Mel spectrogram) calculated from an audio
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recording and outputs the estimated beat positions.
Specifically, an audio beat tracker consists of an audio
activity estimator, which processes the input represen-
tation and generates an activation function, and a post-
processor, which converts the activation function into
beat positions. In this case, the time axis of input data is
organized on the basis of regularly sampled frames. From
this point forward, we refer to this as the frame-based
organization of the time axis.

In the following, we use the shorthand mathematical
formulas based on these two notations: [0 ∶ N − 1] ∶={0,1, ...,N − 1} for N ∈ N and [0,1] ∶= {v ∈ R | 0 ≤
v ≤ 1}. Let Fs denote the frame rate (given in frames
per second (FPS)), which specifies the number of frames
per second determined by the sampling method. Given
a music piece with a duration of t seconds, we assume
that the (spectrogram-like) audio feature representation
is provided by a matrix encoded as follows:

XA ∶ [0 ∶ M − 1] × [0 ∶ K − 1] → R , (1)

whereM = ⌊t · Fs⌋+1 denotes the total number of frames
and K represents the number of features. An audio beat
activity estimator takes XA as input and generates the fol-
lowing activation function:

ΔA ∶ [0 ∶ M − 1] → [0,1] , (2)

which maps each time frame to its corresponding likeli-
hood (or pseudo-probability) of being a beat. See Figure
3a for an example of ΔA. A frame-based post-processor
can then analyze the activation function ΔA and deter-
mine the estimated beats (as frame indices) B =(b0, b1, . . . , bL−1). Here, B is a sequence of length L ∈ N

consisting of strictly monotonically increasing beat posi-
tions bℓ ∈ [0 ∶ M − 1] for ℓ ∈ [0 ∶ L − 1]. Common
frame-based post-processors include predominant local
pulse (PLP) (Grosche and Müller, 2011; Meier et al., 2024),
dynamic programming-based approaches (Ellis, 2007)
such as dynamic Bayesian networks (DBNs) (Böck et al.,
2016b), and conditional random field-based methods
(CRFs) (Fuentes et al., 2019).

3.2 SYMBOLIC BEAT TRACKERS
For a symbolic beat tracker (SBT) that consists of a sym-
bolic activity estimator and a post-processor, the sym-
bolic input can be organized in either a frame-basedman-
ner (as introduced in Section 3.1) using piano-roll-like
input representations (Chuang and Su, 2020), or using
an event-based representation (e.g., an event sequence).
In this study, we focus on PM2S,6 which takes as input
an event sequence obtained from MIDI files (Liu et al.,
2022) and generates an event-based activation function.
Specifically, for an event-based method, the time axis of
input data is organized on the basis of a list of unevenly
distributed time stamps. These time stamps could be the

timing of anymusical attributes encoded by a set𝒜, such
as pitches, durations, note velocity, instrumentation, or
others (Liu et al., 2022). For instance, in the context of
MIDI, 𝒜 = [0 ∶ 127] × [0 ∶ 127] may represent the
set of possible MIDI pitch and velocity values for a note.
Given a list of N time stamps (in seconds) noted as T =(t0, t1, . . . , tN−1), with tn ∈ R≥0 and t0 ≤ t1 ≤ . . . ≤ tN−1, the
input representation of an event-based symbolic activity
estimator can be organized as a list

XS = ((t0, a0), . . . , (tN−1, aN−1)) (3)

where attribute an ∈ 𝒜, and n ∈ [0 ∶ N − 1]. A tuple(tn, an) ∈ R × 𝒜 is also called an event.
An event-based symbolic activity estimator takes XS

as input and generates as output the following activation
function:

ΓS ∶ [0 ∶ N − 1] → R × [0,1]. (4)

Specifically, the event-based symbolic activation func-
tion ΓS maps a time index n to a tuple ΓS(n) = (tn, pn)with
a time stamp tn and a pseudo-probability pn for that time
position to be a beat. See Figure 3e for an example of ΓS.

An event-based post-processor (Liu et al., 2022) can
analyze the event-based activation function ΓS and gen-
erate estimated beat positions B = (b0, b1, . . . , bL−1),
where B is a sequence of length L ∈ N consisting of strictly
monotonically increasing beat positions with bℓ ∈ T forℓ ∈ [0 ∶ L − 1].
4 EVENT-TO-FRAME ACTIVATION
CONVERSION

In this section, we describe our approach to event-to-
frame (E2F) conversion, which not only allowd us to
bridge the frame-based audio and the event-based sym-
bolic activations for further fusion but also enables us to
process activations from all modalities consistently for
subsequent analysis.

Given a list of monotonically increasing time points
T = (t0, t1, . . . , tN−1) with tn ∈ R≥0 and the correspond-
ing event-based activation function ΓS ∶ [0 ∶ N − 1] →
R × [0,1], with ΓS(n) = (tn, pn), we can convert it into a
frame-based representation ΔS

E2F ∶ [0 ∶ M − 1] → [0,1]
based on a specified frame rate Fs. Let M ∈ N with M =⌊tN−1 ·Fs⌋+1 be the total number of frames, thenwe define

sn ∶= ⌊tn × Fs⌋ , (5)

for n ∈ [0 ∶ N−1]. Note that sn ∈ [0 ∶ M−1] is the frame
index corresponding to the time stamp tn. To account for
the case where several time stamps are assigned to the
same frame index, we further define

p∗
n ∶= max{pℓ|sℓ = sn, ℓ ∈ [0 ∶ N − 1]} (6)
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Figure 3 Processing of beat activation functions. (a) Frame-based activation function from an audio activity estimator. (b) Gaussian
smoothing of (a). (c) Max normalization of (b). (d) Peak-picking results of (c). (e) Event-based activation function from a symbolic
activity estimator. (f) Event-to-frame conversion of (e). (g) Gaussian smoothing of (f). (h) Max normalization of (g). Red vertical lines
indicate reference annotated beats. Red regions highlight the ±70 ms tolerance window.

to keep the maximum probability p∗
n among those

stamps. The converted event-based activation function is
then defined as follows:

ΔS
E2F(m) ∶= {p∗

n, form = sn,
0, otherwise, (7)

form ∈ [0 ∶ M−1]. Figure 3e and 3f provides an example
of E2F conversion.

5 UNIFIED POST-PROCESSING PIPELINE

As mentioned in Section 1, we establish a unified post-
processing pipeline to handle activations of all modalities
(i.e., audio, symbolic, and fused) consistently, aiming to
preserve the original properties of the activations with-
out imposing strong assumptions. This ismainly achieved
by converting all event-based activations to frame-based
activations using E2F conversion, smoothing and normal-
izing all derived frame-based activations, and then apply-
ing peak-picking with explicit and transparent settings.
In this section, we describe our methods for smoothing
and normalizing (Section 5.1), and peak-pickingmethods
with three types of threshold settings (Section 5.2 and
Section 5.3). The effectiveness of thesemethods are then
justified in Section 6.2.

5.1 SMOOTHING AND NORMALIZATION
As pointed out by Müller and Chiu (2024), novelty
enhancement strategies, such as smoothing and nor-
malization, are essential before peak-picking. By apply-
ing Gaussian smoothing and max normalization, we can
reduce spurious peaks caused by irrelevant fluctuations,
filter out peaks occurring at a frequency too high for

natural beat tracking, and standardize the activation val-
ues to make them comparable and treatable as pseudo-
probabilities.

For each frame-based activation function, following
Müller and Chiu (2024), we first apply a one-dimensional
Gaussian filter, defined in Equation (8), to smooth out
irrelevant local fluctuations. Let

g𝜍(u) = 1√2𝜋𝜎 exp(− u2

2𝜎2
), (8)

be a truncated Gaussian function, where u ∈ [−3𝜎 ∶ 3𝜎].
Taking into account the conventional tolerance window
of ±70 ms for beat-tracking evaluation, we empirically
fixed 𝜎 = 3 (frames) at a frame rate of 100 FPS.
After smoothing, we apply max normalization7 by divid-
ing each activation function by its maximum value to
scale all values to the range [0,1]. Figure 3 illustrates the
effects of Gaussian smoothing and max normalization.

5.2 GLOBAL THRESHOLD
One of the simplest methods to convert activation func-
tions into estimated beat positions is to apply peak-
picking with a global fixed threshold 𝜏, e.g., 𝜏 = 0.5.
Despite being simple and commonly adopted (Böck
et al., 2016b; Chiu et al., 2023; Foscarin et al., 2024),
this method is sensitive to the threshold values. While
a high threshold may remove too much information
from the activation functions and lead to a low recall
value, a low threshold may retain noise or irrelevant
activation peaks, and lead to a low precision value.
The optimal threshold for each track depends on both
the data and the model (i.e., activity estimator) and
is generally unknown or not specified in many use
cases. In this study, we experiment with thresholds 𝜏 ∈{0.01,0.0625,0.1,0.125,0.25,0.5,0.75,0.875}.
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Additionally, given the reference annotated beat posi-
tions, one can also investigate the upper bound perfor-
mance of an activation function by performing a grid
search. Specifically, a range of global peak thresholds
(i.e., 𝜏 ∈ {0.01,0.0625,0.1,0.125,0.25,0.5,0.75,0.875})
is defined, and peak-picking is applied with each thresh-
old to each test track, reporting only the highest F1
scores. We refer to this reference-informed method as
“oracle threshold.”

5.3 ADAPTIVE LOCAL THRESHOLD
In contrast to a fixed global threshold, an adaptive
threshold that adjusts on the basis of the local properties
of the activation function is generally more robust and
less sensitive to the hyperparameter settings (Müller and
Chiu, 2024). In this study, we determine a local average
function 𝜇 ∶ [0 ∶ M − 1] → R defined by

𝜇(m) ∶= 1
2W + 1

W∑ℓ=−WΔ(m + ℓ), (9)

and use it as the local threshold of the peak-picking. The
m ∈ [0 ∶ M − 1] and the parameter W ∈ N sets the
size of the averaging window. Zero padding is applied to
avoid summation over negative indices. In this study, we
experiment withW corresponding to 5, 10, or 20 seconds.

6 EXPERIMENTS

In this section, we first describe the evaluation met-
rics (Section 6.1), then report our experiment results of
pretrained models (Section 6.2) and retrained models
(Section 6.3), followed by a discussion of insights derived
from the Maz-5 scenario (Section 6.4).

6.1 EVALUATION METRICS
Following the conventional evaluation setting for beat
tracking, we adopt from mir_eval the metrics of F1
score (F1), precision (P), and recall (R) with an error tol-
erance of ±70 ms. Furthermore, we also compute the
L-correct metric (Chiu et al., 2022; Grosche and Müller,
2011) to evaluate how well the beat trackers can han-
dle a longermusical context. Rather than evaluating each
annotated reference beat individually, the L-correct met-
ric requires that at least L consecutive reference beats are
correctly detected, where L ∈ N is an adjustable param-
eter. In this work, we report the F-measure of L-correct
with L ∈ {2,3,4}, denoted as F-L*.

6.2 PRETRAINED BEAT TRACKERS
In this section, we evaluate the pretrained activity esti-
mators (i.e., madmom for audio modality and PM2S for the
symbolic one) using our unified post-processing pipeline
(Section 5) and the Maz-5 dataset. Since neither of these

two systems was trained on the Maz-5 dataset, the eval-
uation fairly and accurately reflects their performance
on unseen classical music. We also experiment with late
fusion of the twomodalities to investigate the underlying
complementarity between the two types of models.

6.2.1 Activity estimators and post-processors
Both madmom and PM2S can jointly generate beat and
downbeat activations. In this work, we focusmore on the
beat activations. For the audio modality (A) we adopt the
RNNDownBeatProcessor of madmom to derive the beat
activationsΔA. For the symbolicmodality (S), we first tran-
scribe the 301 recordings using the model by Kong et al.
(2021) to derive MIDI files. We then apply the CRNN activ-
ity estimator by Liu et al. (2022) (referred to as PM2S) to
derive the beat activation functions ΓS. Finally, we con-
duct the E2F conversion to derive ΔS

E2F. As described in
Section 5, these frame-based activation functions will be
smoothed and normalized before peak-picking. We fur-
ther experiment with two simple late-fusion methods:
addition-based (A+S) and (element-wise) multiplication-
based (A×S)methods. Specifically, we take the smoothed
and normalized activation functions of single modalities
(i.e., A and S), add them up or multiply them point-wise,
and smooth and normalize the fused activations again
before peak-picking.

As described in Section 5, for all the derived frame-
based activations mentioned above, we apply peak-
picking with three types of threshold settings, including a
global (GLB) threshold, an adaptive local (LOC) threshold,
and an oracle threshold, respectively.

6.2.2 Effects of peak-picking thresholds
Table 2 presents the beat-tracking results of pretrained
single-modality models (ABTs and SBTs) derived using
three types of peak-picking settings (GLB, LOC, and ora-
cle).8 We specify the hyperparameters using a dash sym-
bol; for example, GLB-0.1 indicates a global threshold
with 𝜏 = 0.1, and LOC-20 indicates a local threshold
using a window length of 20 seconds. The following
observations can be made: Under the GLB threshold
setting, the performances of ABTs and SBTs across all
evaluation metrics show high sensitivity to the thresh-
old values. For example, increasing the global thresh-
old from 0.25 to 0.5 reduces the F1 score for ABTs
from 0.886 to 0.660 (−0.226) and for SBTs from 0.775
to 0.662 (−0.113). Using the oracle threshold setting
reveals upper bound F1 scores for ABT (0.892) and
SBT (0.855). Under the LOC threshold setting, while
the achieved F1 scores may be slightly below the
GLB best case (e.g., for ABT, GLB-0.25: 0.886 vs. LOC-
5: 0.835), they remain comparable and exhibit sub-
stantially lower sensitivity to hyperparameter settings.
Specifically, varying the window length of LOC thresh-
old setting has only a small impact across all evaluation
metrics.
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Threshold F-measure L-correct

F1 P R F-L2 F-L3 F-L4

Audio beat trackers (ABTs)

GLB-0.01 0.757±0.054 0.632±0.071 0.968±0.020 0.549±0.116 0.476±0.130 0.409±0.140
GLB-0.1 0.825±0.053 0.730±0.074 0.963±0.021 0.698±0.101 0.639±0.119 0.565±0.140
GLB-0.25 0.886±0.048 0.877±0.056 0.901±0.053 0.831±0.080 0.795±0.098 0.746±0.125
GLB-0.5 0.660±0.108 0.955±0.037 0.518±0.118 0.487±0.160 0.372±0.174 0.284±0.161
Oracle 0.892±0.045 0.866±0.061 0.923±0.044 0.842±0.071 0.809±0.089 0.759±0.120
LOC-5 0.835±0.047 0.748±0.066 0.958±0.024 0.745±0.080 0.696±0.098 0.628±0.121
LOC-10 0.840±0.048 0.755±0.067 0.958±0.024 0.746±0.082 0.696±0.100 0.627±0.124
LOC-20 0.838±0.048 0.751±0.068 0.960±0.024 0.737±0.084 0.686±0.102 0.616±0.125

Symbolic beat trackers (SBTs)

GLB-0.01 0.823±0.045 0.741±0.064 0.937±0.038 0.700±0.092 0.606±0.123 0.497±0.148
GLB-0.1 0.836±0.056 0.877±0.064 0.804±0.072 0.723±0.101 0.648±0.129 0.568±0.149
GLB-0.25 0.775±0.070 0.913±0.057 0.679±0.091 0.589±0.135 0.488±0.161 0.400±0.175
GLB-0.5 0.662±0.092 0.935±0.052 0.522±0.107 0.371±0.163 0.258±0.174 0.201±0.168
Oracle 0.855±0.048 0.845±0.072 0.870±0.052 0.767±0.084 0.698±0.114 0.621±0.138
LOC-5 0.841±0.056 0.915±0.055 0.782±0.069 0.745±0.100 0.676±0.131 0.602±0.152
LOC-10 0.842±0.056 0.915±0.055 0.783±0.068 0.746±0.099 0.677±0.129 0.604±0.152
LOC-20 0.844±0.055 0.915±0.055 0.786±0.067 0.750±0.097 0.682±0.128 0.610±0.150

Table 2 Work-wise average beat-tracking results for pretrainedmodels. (Top) madmom-based audio beat trackers. (Bottom) PM2S-based
symbolic beat trackers. The best results are highlighted in bold. GLB: global; LOC: local.

Moreover, as mentioned in Section 5.2, selecting an
optimal global threshold involves a precision–recall trade-
off that can obscure the models’ original behaviors. For
instance, adjusting the global threshold from 0.01 to 0.5
raises ABT precision from 0.632 to 0.955 (+0.333) but
decreases recall from 0.968 to 0.518 (−0.450). Opposed
to GLB, the LOC method determines the threshold on the
basis of the average amplitude within each window, thus
compensating for local changes in intensity or dynam-
ics. Under this LOC setting, differences between ABTs and
SBTs becomemore apparent: ABTs tend to achieve higher
recall, while SBTs generally attain higher precision, high-
lighting the potential complementarity between the two
methods based on different modalities and concepts.
Lastly, the adaptation capability of LOC also stabilizes the
L-correct results. When L increases from 2 to 4, the GLB-
based methods often show a dramatic drop in F1 scores.
For example, for SBT, GLB-0.01 decreases from 0.700
to 0.497 (−0.203) and GLB-0.1 decreases from 0.723 to
0.568 (−0.155), while LOC-20 shows a slightly smaller
decrease, from 0.750 to 0.610 (−0.140). This may be
because expressive music often demonstrates dramatic
musical changes (e.g., in volume or tempo), which fail the

global settings (since any single error can break the con-
tinuity of L-correct). However, these dramatic changes
may remain locally consistent, allowing adaptive meth-
ods to partially capture them.

In summary, we can see that, despite being simple
and free from strong assumptions, the use of GLB still
requires a careful selection of the threshold, which could
potentially obscure the properties of activation functions.
We therefore suggest LOC as a neutral post-processor to
better reflect the behavior of the activation functions.

6.2.3 Effects of late fusion
With the overall good performance using LOC and its sta-
bility across the hyperparameterW, we now fix the peak-
picking setting to LOC with a window length of 20 sec-
onds (LOC-20) and investigate the behavioral differences
between single-modality beat trackers and late fusion-
basedmodels. Table 3 (top) presents the work-wise aver-
age beat-tracking results for audio recordings of Maz-5.
From the F1 scores, we can observe improvements made
by both addition-based (A + S) and multiplication-based
(A×S) methods. For example, the F1 score increases from
0.844 for S to 0.885 for A + S and to 0.850 for A × S.
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Activation F-measure L-correct

F1 P R F-L2 F-L3 F-L4

Pretrained

A 0.838±0.048 0.751±0.068 0.960±0.024 0.737±0.084 0.686±0.102 0.616±0.125
S 0.844±0.055 0.915±0.055 0.786±0.067 0.750±0.097 0.682±0.128 0.610±0.150
A+S 0.885±0.044 0.838±0.063 0.947±0.027 0.823±0.071 0.790±0.086 0.744±0.109
A×S 0.850±0.051 0.959±0.035 0.765±0.067 0.749±0.093 0.684±0.121 0.610±0.142

Retrained

A 0.816±0.038 0.716±0.054 0.965±0.014 0.696±0.068 0.606±0.087 0.468±0.100
S 0.927±0.037 0.919±0.042 0.938±0.037 0.902±0.053 0.882±0.066 0.858±0.082
A+S 0.860±0.036 0.786±0.054 0.962±0.015 0.772±0.064 0.712±0.079 0.625±0.107
A×S 0.937±0.034 0.943±0.031 0.933±0.041 0.917±0.047 0.899±0.059 0.882±0.069

Table 3 Work-wise average of beat-tracking results (including late-fusion approaches). Beat-tracking results (including late-fusion
approaches) were derived using peak-pickingwith local average threshold with awindow length of 20 seconds (LOC-20). The best results
are highlighted in bold.

Specifically, A+S and A×S represent twoways to leverage
the complementarity between A and S: recall-oriented
and precision-oriented, respectively. While A × S retains
only the activation peaks agreed upon by both A and S,
leading to much higher precision than A and S (A × S:
0.959; A: 0.751; S: 0.915), A + S retains all strong activa-
tion peaks fromeither A or S, leading to a high recall (A+S:
0.947; A: 0.960; S: 0.786).

Figure 4 (left) visualizes the behaviors of all these
pretrainedmodels. Comparing themusical score as a ref-
erence, we can observe the different behaviors between
the four methods: When there are multiple note onsets
close together (e.g., around the frame 4700 and the
frame 4800, between the last beat of measure 40 and
the second beat of measure 41 in the score), A and S
generate different peaks in the activation function that
do not correspond to the annotations. As these non-beat
peaks are weak, the addition, smoothing, and normaliza-
tion process of addition-based fusion can remove them,
improving the performance of A + S. On the other hand,
A × S eliminates the non-beat peaks around frame 4700
via the multiplication process. Figure 4 (left) also explains
why the L-correct scores can be largely improved for
A+S in Table 3: While A×Swill fail if either A or Smakes a
false-negative prediction, breaking the continuity
required by L-correct, A + S will retain strong activation
peaks from either A or S while smoothing out weak
predictions.

6.3 RETRAINED BEAT TRACKERS
The pretrainedmodelswere trained on datasets indepen-
dent of Maz-5; for example, the madmom BiLSTM was pri-
marily trained on pop, rock, and dance music, while the

PM2S CRNN was trained on classical piano music by vari-
ous composers, excluding Maz-5. In the next experiment,
we retrained the same models (i.e., BiLSTM and CRNN)
from scratch using Maz-5 with five-fold cross-validation.
This approach not only enables model evaluation with
limited data but also ensures that all performances (ver-
sions) in the Maz-5 dataset appear at least once in both
the training and test sets. Specifically, we split the five
Mazurkas into five folds. For each split, three Mazurkas
are used for training, one for validation, and one for test-
ing. In general, retraining allows us to inspect the capa-
bility of a model to adapt to a specific music scenario
(e.g., Chopin Mazurkas). In this section, we describe our
retrainingmethods, conduct experiments similar to those
for the pretrained models, and discuss the consistencies
and differences between the pretrained and retrained
results.

6.3.1 Activity estimators and post-processors
Taking the retrained single-modality models, we apply
them to the corresponding test split to derive the acti-
vations. We then apply similar late-fusion method and
unified post-processing (as those used for the pretrained
models) to the activations to derive beat estimations for
further analysis.

6.3.2 Effects of peak-picking thresholds
Figure 5 visualizes and summarizes the observed effects
of peak-picking thresholds. Despite that fact that both
pretrained (Figure 5a) and retrained (Figure 5b) mod-
els show a strong dependency on GLB threshold val-
ues (solid curves), this dependency is less pronounced
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Figure 4 Comparison of four types of activations. (top) Music score of Op. 30, No.2. (left) Activation functions from pretrained models.
(right) Activation functions from retrained models. Red regions highlight the ±70 ms tolerance window. Blue vertical lines indicate the
beat estimations derived using peak-picking with the LOC-20 threshold setting. Op.: Opus.

Figure 5 Effects of peak-picking thresholds on beat-tracking F1 scores. (a) Pretrained models. (b) Retrained models. Dashed lines
indicate the F1 scores of the corresponding results derived using local average threshold (LOC-20). Solid dots indicate the F1 scores
derived using global threshold values 𝜏 ∈ {0.01,0.0625,0.1,0.125,0.25,0.5,0.75,0.875}.
for the retrained models, particularly for small thresh-
olds. Furthermore, compared with the pretrained mod-
els, the retrained models show an overall improvement
in F1 scores, along with shifts in optimal global thresh-
olds (e.g., pretrained S: 0.0625; retrained S: 0.125). This
again highlights the challenge of identifying the optimal
global threshold in practical applications. However, the
local threshold-based results (dashed lines), though not
the best, generally perform close to the best case of GLB
settings.

6.3.3 Effects of training data
Going beyond Figure 5, Table 3 reveals further differ-
ences between pretrained (top) and retrained (bottom)
models. While the retrained ABT behaves similarly to a
pretrained ABT (retrained F1: 0.816; pretrained F1: 0.838),
the retrained SBT achieves much higher scores for all
metrics compared with the pretrained SBT (e.g., retrained
F1: 0.927; pretrained F1: 0.844), indicating that the event-
based CRNN model may have higher capability to learn

(or, in some way, overfit to) the musical patterns in
Maz-5. Figure 4 illustrates the differences between the
pretrained (left) and retrained (right) models. For audio
activations (A), both pretrained and retrained BiLSTMs
show a tendency to detect onsets and generate activa-
tion peaks at non-beat positions (e.g., between frames
4700 and 4800). However, the retrained BiLSTM pro-
duces sharper, higher peaks, suggesting greater sensi-
tivity to Maz-5 note events. For symbolic activations,
both pretrained and retrained CRNNs produce less pro-
nounced activation peaks compared with the BiLSTMs
(e.g., around frames 4700–4800), yet the retrained CRNN
appears to capture differentmusical patterns and retains
more accurate peaks than the pretrained version (e.g.,
around frames 4350–4450).

6.3.4 Effects of late fusion
The improvement in retrained SBT noted above also influ-
ences the effects of late-fusion methods. In Table 3 (bot-
tom), we see that addition-based fusion (A+S) no longer
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outperforms SBT (S), whereasmultiplication-based fusion
(A × S) still does. This shift is primarily due to two fac-
tors. First, the recall of retrained S increases significantly,
from 0.786 to 0.938, which also substantially boosts the
recall of retrained A × S (from 0.765 to 0.933). Second,
the retrained A appears more sensitive to Maz-5 note
events, generating stronger peaks at non-beat positions,
which reduces its precision (from 0.751 to 0.716) and,
in turn, lowers the precision of retrained A + S as well.
Additionally, late-fusion methods prove to be less effec-
tive than in the pretrained case. Specifically, as retrained S
becomes much stronger and retrained A slightly weaker,
the reduced complementarity between the two modali-
ties limits the benefits of fusion. In summary, similar to
our findings regarding optimal global threshold, the opti-
mal fusion method is also dependent on the model and
the data, which are mostly unknown for real use cases.
This raises the question of whether DL-based methods
can learn a more effective approach to fusing the two
modalities based on the providedmusical content, which
is beyond the scope of this article.9

6.4 INSIGHTS FROM MAZ-5 SCENARIO
We further color-code the F1 scores of Maz-5, as shown
in Figure 6. One can observe that the effectiveness of
all models is version-dependent; i.e., they depend on
the properties of specific versions. For example, versions
#31, #40, #50, and #71 of M63-3 are consistently more
challenging for all models compared with other versions.
A possible explanation is the poor audio quality of the
recordings and the varied interpretations by pianists (e.g.,
left-hand onsets may intentionally not align with right-
hand onsets). Despite the version dependency, one can
still observe certain trends of the average (right side after
the black vertical line). Consistent with our observations
in Table 3, for the pretrained cases, A + S typically works
better than A and S. Interestingly, in the retrained case,
the improvement of S becomesmore evident in the color-
coded plot, shown as a horizontal blue line (for M63-3)
that contrasts with the original results. Aside from cases
of poor audio quality (e.g., version #50), which intro-
duce errors during transcription, retrained S appears to
adapt well to the Maz-5 scenario and to overcome cer-
tain version-wise challenges (e.g., for M63-3, retrained S
performs well on versions #35, #36, and #71–73, which
are challenging for all pretrainedmodels). Lastly, one can
also observe the challenges posed by musical proper-
ties by comparing across the five Mazurkas. For example,
M24-2 and M30-2 are noticeably easier for all mod-
els. This is partly because the number of non-beat note
events is lower in theseMazurkas. In summary, the cross-
version nature of the Maz-5 scenario, combined with
the color-coded plot, not only aligns with our previous
observations but also offers deeper insights into ver-
sion dependency, adaptation to specific music scenarios,

and model limitations (e.g., challenges in handling low-
quality recordings).

7 TOWARD DOWNBEAT TRACKING

We now repeat the experiments for downbeat tracking
to assess whether the insights gained from beat tracking
extend to downbeats, which rely on higher-level metrical
structures rather than just local onset information. While
beat tracking primarily detects rhythmic pulses, down-
beat tracking requires understanding phrase structures,
harmonic cues, and long-term dependencies, making it
a substantially more difficult task. Rather than aiming to
improve downbeat estimation, this experiment explores
the potential of fusing different modalities for this chal-
lenging problem.

Using the same experimental pipeline, we evalu-
ate downbeat activations from pretrained and retrained
audio beat trackers (A) and symbolic beat trackers (S),
as well as their fusion variants (A + S and A × S). As
shown in Table 4, the pretrained models perform poorly
in downbeat tracking, with all F1 scores below 0.500 and
L-correct measures under 0.100, indicating low quality in
capturing the continuity of downbeat estimations. While
the pretrained Amodel maintains high recall (0.897), the
pretrained S model does not retain its precision advan-
tage from beat tracking (0.309 vs. 0.915 in Table 3), sug-
gesting that downbeat tracking is a task that is more
complex for and less effectively learned by these mod-
els. Given these limitations, late fusion provides little
improvement.

Retraining the models follows a similar trend as in
beat tracking. The retrained Amodel exhibits greater sen-
sitivity to note events in Maz-5, improving recall (from
0.897 to 0.961) but at the cost of reduced precision (from
0.301 to 0.254). The retrained S model shows substan-
tial improvements in both precision (from 0.309 to 0.561)
and recall (from 0.744 to 0.814), significantly boosting
L-correct scores (from below 0.100 to above 0.390). As
in beat tracking, the precision-oriented fusion method
(A×S) further enhances the F1 score (from0.657 to 0.671)
by slightly lowering recall (from 0.814 to 0.791) while
improving precision (from 0.561 to 0.591).

Overall, late fusion is beneficial only when bothmodal-
ities provide meaningful and complementary outputs.
The strong improvements in retrained S for both tasks
suggest that event-based representations with explicitly
defined note events offer a more effective approach for
classical music, capturingmusical structure and phrasing
more effectively than audio-based methods alone.

8 CONCLUSION

In this work, we developed a cross-modal approach
to beat tracking, aiming to deepen our understanding
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Figure 6 Beat-tracking F1 scores of Maz-5.

of audio and symbolic beat trackers while exploring
their complementarity through fusion methods. Using
a dataset of Chopin Mazurkas (Maz-5), we evaluated
pretrained models in a controlled musical scenario and
introduced a unified post-processing pipeline to enable
direct comparisons, mitigating confounding effects from
conventional post-processors. Retraining the models
provided insights into their adaptability to Maz-5, reveal-
ing that symbolic-based methods benefit more from
domain-specific training. Our exploration of late-fusion

strategies demonstrated how combining audio and sym-
bolic modalities can enhance performance by balancing
precision and recall. To extend our analysis, we also inves-
tigated downbeat tracking to assess whether insights
from beat tracking generalize to this more complex task.
While retraining and fusion exhibited similar trends in
both beat and downbeat tracking, the overall perfor-
mance metrics were notably lower in the latter, high-
lighting the additional challenges of downbeat tracking.
Beyond these findings, our work provides a structured
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Activation F-measure L-correct

F1 P R F-L2 F-L3 F-L4

Pretrained

A 0.450±0.039 0.301±0.030 0.897±0.061 0.019±0.013 0.008±0.005 0.007±0.002
S 0.435±0.049 0.309±0.036 0.744±0.093 0.027±0.021 0.013±0.014 0.010±0.010
A+S 0.459±0.040 0.312±0.029 0.876±0.069 0.019±0.012 0.008±0.006 0.007±0.002
A×S 0.448±0.064 0.347±0.050 0.640±0.105 0.084±0.047 0.032±0.028 0.018±0.019

Retrained

A 0.401±0.026 0.254±0.020 0.961±0.029 0.010±0.004 0.005±0.001 0.005±0.001
S 0.657±0.071 0.561±0.072 0.814±0.080 0.480±0.100 0.432±0.102 0.396±0.101
A+S 0.434±0.026 0.281±0.021 0.971±0.025 0.016±0.007 0.008±0.004 0.007±0.003
A×S 0.671±0.073 0.591±0.072 0.791±0.082 0.519±0.103 0.471±0.109 0.433±0.111

Table 4 Work-wise average of downbeat-tracking results (including late-fusion approaches). Downbeat-tracking results (including late-
fusion approaches) were derived using peak-picking with local average threshold with a window length of 20 seconds (LOC-20). The best
results are highlighted in bold.

framework for analyzing beat tracking across differ-
ent input modalities. Future research could further
refine fusion strategies and explore broader datasets to
enhance the robustness of rhythm analysis techniques.
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NOTES

1. In general, every evaluation metric has its limitations and provides
insights from specific perspectives. While the F-measure is simple and
concise, it does not reflect a model’s ability to make continuous cor-
rect estimations (Davies et al., 2021; 2009). CMLt and AMLt (Davies et
al., 2009), designed to evaluate models in a continuity-based man-
ner, require at least two consecutive correct estimations. In contrast,
L-correct (Grosche and Müller, 2011) allows for manual adjustment of
the continuity length criterion. Moreover, thesemetrics do not account
for metric-level switching behaviors in beat-tracking models. For a
more detailed discussion of the potential inconsistencies and limita-
tions of existing metrics, readers can refer to Chiu et al. (2022).

2. While the use of a single dataset indeed limits the generalizability of
this study, analyzing additional datasets would introduce considerable
complexities (e.g., changes in time signatures or underlying inconsis-
tencies between musical styles that may influence model learning),
requiring discussion beyond the scope of this work. As our goal is to
understand existingmodels in a carefully controlled setting rather than
propose an approach aimed at significant performance improvements,
we focus on Maz-5 in this study.

3. Given the space limitations and the relatively limited insights gained,
we omit the event-based late-fusion experiments in this paper and
report the results in our GitHub repository: https://github.com/SunnyC
YC/CrossModalBeat.

4. The conversion from a frame-based to an event-based representation
involves more technical decisions and may result in greater informa-
tion loss. Therefore, we adhere to the frame-based representation, as
it is more fundamental.

5. The Mazurka Project: http://www.mazurka.org.uk, 2010

6. In Liu et al. (2022), the model is referred to as Performance MIDI-to-
Score (PM2S), which consists of both an activity estimator and a rule-
based post-processor. In this work, we use only the activity estimator
and refer to it as PM2S.

7. Note that there are more advanced local maxima-based normaliza-
tion methods to further improve the tracking performance of the acti-
vation function (Nunes et al., 2015). However, as our goal is to under-
stand rather than to improve the activation function, we consciously
avoid complicated processing methods or fine-tuning of the process-
ing parameters.

8. In this article, we omit the results and discussions of conventional post-
processors such as DBN (Böck et al., 2016a; Krebs et al., 2015) and DP
(Ellis, 2007; McFee et al., 2015) owing to the confounding effects intro-
duced by their strong tempo assumptions and their poor performance
(all F1 scores below 0.750; see our GitHub repository for details). For a
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detailed discussion on the failure of DBN and DP on the Maz-5 dataset
and how they may hinder the properties of the activation functions,
readers may refer to Chiu et al. (2023).

9. Preliminary results of training-based fusion can be found in our GitHub
repository: https://github.com/SunnyCYC/CrossModalBeat.
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