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ABSTRACT

Identifying beat positions in music recordings, a central task in Music Information
Retrieval (MIR), is commonly referred to as beat tracking. Typically, this involves com-
puting an activation function to reveal frame-wise beat likelihood and then conducting
post-processing to derive final beat positions. Existing methods often operate offline,
requiring access to the entire music track for processing. In this article, we introduce
a real-time beat tracking system based on the predominant local pulse (PLP) concept,
originally designed for offline use. Our main contribution is the successful transforma-
tion of the PLP-based algorithm into a real-time procedure. Unlike traditional offline
methods providing static beat positions, our real-time approach dynamically captures
changes in local pulse characteristics with each frame of an audio stream. This yields
additional insights, including beat context, beat stability, and beat lookahead for pre-
dicting beats in advance. In this way, our system not only demonstrates high control-
lability for real-time applications but also can operate at zero latency. Additionally, we
present experiments comparing our real-time beat tracking system with other models
and evaluating the accuracy of our lookahead feature. Finally, we showcase two real-
world applications for interactive music making and educational music gaming that
creatively leverage our system’s output. In summary, our real-time beat tracking sys-
tem offers a lightweight algorithm that is particularly well-suited for interactive music
software development.
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1 INTRODUCTION

Music Information Retrieval (MIR) plays a key role in
analyzing and understanding musical content, with beat
tracking standing out as a central task within this field.
The general idea of beat tracking is to have a system that
analyzes music and automatically taps along with the
beat, similar to what human listeners would do (Dixon
and Cambouropoulos, 2000; Ellis, 2007). The human per-
ception of beats in music can occur at different met-
ric levels, for example, the tactus level (quarter notes),
the measure level (bars), and the tatum level (tempo-
ral atom), which refers to the fastest repeating temporal
pattern in the music (Mdller, 2021).

Besides beat tracking, there are several closely related
concepts: While tapping and marking beat positions in
a piece of music, beats can be counted and grouped
into bars, a process called meter tracking (Holzapfel and
Grill, 2016; Klapuri et al.,, 2006). Identifying the first beat
of each bar is helpful for many music applications and
is referred to as downbeat tracking (Bock et al.,, 2016b;
Durand et al.,, 2015; Krebs et al., 2016). Analyzing the
number of beats per minute (BPM) helps to identify the
tempo of the music, which is commonly known as tempo
tracking (Krebs et al., 2015).

In this work, we mainly focus on the task of beat track-
ing that involves identifying the time positions of beats
within a music recording and is essential for MIR applica-
tions ranging from music transcription to rhythm-based
interactive systems. Typically, beat tracking is a two-step
process: first, calculating an activation function to extract
frame-wise beat likelihood from the music signal, and
second, performing a postprocessing method to deter-
mine final beat positions from the activation function.

Most existing beat tracking methods are designed for
offline use and rely on access to the entire music track for
processing. In recent years, deep learning has led to sub-
stantial improvements in beat tracking with approaches
such as Temporal Convolutional Networks (TCN) (Bock
and Davies, 2020; Davies and Béck, 2019), Transformer
(Zhao et al,, 2022), or SpecTNT-TCN (Hung et al,, 2022).
With the growing demand for real-time applications like
interactive music systems and live performance tools,
the need for online-capable beat tracking algorithms has
become more evident. This trend is reflected in contribu-
tions such as BeatNet (Heydari et al., 2021), Novel-1D
(Heydariet al., 2022), or the most recent model BEAST-1
(Chang and Su, 2024).

When employing online approaches for real-time
applications or integrating them into larger interactive
systems, two prominent challenges emerge: latency and
controllability. First, latency encompasses delays not only
from the beat tracker itself but also from network com-
munication, audio output processing, or controller input
lags. These delays make it challenging to maintain syn-
chronization between analyzed input audio streams and

generated output audio streams. Second, controllability
in this context refers to the challenges most online beat
trackers face in being easily adjustable for specific real-
time application requirements. Most real-time beat track-
ing systems lack explicit control over parameters such as
pulse level (e.g., quarter-note or eighth-note level) or the
amount of latency.

In this article, we present a real-time beat tracking
system built on the predominant local pulse (PLP) con-
cept (Grosche and Miller, 2011), originally developed for
offline use. Our main contribution is the successful trans-
formation of the PLP-based algorithm into a real-time
procedure. With our approach, we achieve beat detection
performance comparable to that of most other online
beat trackers. In contrast to previous beat trackers, our
method allows for achieving zero latency while remain-
ing lightweight and easily controllable. In particular, our
approach incorporates beat lookahead functionality to
mitigate latency effects in interactive real-time systems
and provides enhanced controllability through adjustable
parameters.

To evaluate the influence of the lookahead feature
on beat detection performance, we conduct experiments
using a variety of datasets. In addition to quantitative
evaluation, we demonstrate the practical usability of our
system through two real-world applications for interac-
tive music making and educational music gaming. These
applications creatively utilize the output of our system,
highlighting its controllability and versatility. In sum-
mary, our real-time beat tracking system represents a
lightweight algorithm that is especially useful for inter-
active music software development. By bridging the gap
between offline beat tracking methods and real-time
application requirements, our system opens up new pos-
sibilities for musicians to use real-time beat tracking for
their interactive music systems.

The subsequent sections of this article follow this
structure: In Section 2, we explore the original PLP-based
algorithm. Section 3 discusses the conversion of this
algorithm into a real-time procedure. In Section 4, we
analyze the system output resulting from this real-time
procedure. With Section 5, we conduct multiple experi-
ments, and their results are discussed in Section 6. We
demonstrate our real-time system through two real-
world scenario applications in Section 7. Finally, Section 8
concludes our method. Additional materials and audio
examples are available on a supplemental website.!

2 PLP-BASED ALGORITHM

Before discussing how to convert the PLP-based algo-
rithm into a real-time procedure (Section 3), we first look
at the original offline procedure (Grosche and Mdller,
2011). All the essential steps for calculating the PLP are
illustrated in Figure 1 (left column).
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Figure 1 Illustration of the original offline PLP-based algorithm (left side), as described in Section 2, and the real-time procedure (right
side), detailed in Section 3. (a) Audio signal. (b) Activation function. (c) Tempogram. (d) Pulse kernels. (e) PLP function. To provide
clearer visualization and illustrate the general ideq, we plot kernels only at 2-second intervals.

First, the audio signal (Figure 1a) is transformed into an
activation? function A : Z — R for time positions n € Z.
The peaks of the activation function A (Figure 1b) indicate
the likelihood of observing a beat at time positions n. To
identify local periodic patterns, we perform a Short-Time
Fourier Transform (STFT) on A. For this, we define a win-
dow function W : [-N : N] — Rfor N € Nthatis normal-
ized and centered around each time position n, resulting
in a total window size of K = 2N + 1. For an arbitrary but
fixed time position n € Z, the window W defines a neigh-
borhood indexed by m € [n—N:n+ N]. The complex-
valued Fourier coefficient

ni’:v A(m) - W(m —n) - exp(—2miwm)

m=n-N

Fn,w) = (1)

obtained from the STFT is defined for time positions
n € Z, frequencies w € R,,, and local time indices m €
[n=N:n+N]. From the Fourier coefficient #(n, w), we
derive a Fourier tempogram J°(n, ), given by

T(n, ) = |F(n,7/60)|. (2)

This time-frequency representation of the activation
function A, as illustrated in Figure 1c, is commonly mea-
sured in BPM rather than Hertz, with a tempo parame-
ter t = 60 - w. Utilizing the Fourier tempogram 7(n, 7)
relies on two assumptions commonly employed in beat
tracking. First, beat positions go along with note onsets,
and, second, beat positions are periodically spaced. These
assumptions are exploited by comparing local sections of
the activation function A with windowed sinusoidal ker-
nelsx, : [n—=N:n+N] - R, given by the equation

x,(M) 1= W(m —=n) - cos2m ((z,/60) - m —¢.)), (3)

for m € [n—N:n+ NJ], as shown in Figure 1d. To obtain
a local beat (or pulse) tracker, we choose for each time
position n € Z a kernel x, that optimally matches the
local tempo structure of the signal within a given tempo
range ©, as illustrated with colored dots in Figure 1c. For
instance, when denoting ® = [30 : 240], we refer to a
tempo range spanning from 30 to 240 BPM. In Equation
3, 7, is defined as the tempo parameter that maximizes
the tempogram 7°(n, ) for each time position n.

7, 1= argmax(J(n,))

7€®

(4)

Additionally, ¢, represents the phase of the windowed
sinusoid with tempo 7, that best correlates with the local
section around n of the activation function A.

1
¢, = —5—angle(F(n, 7,/60)) ©)

To obtain a globally defined pulse tracker, the final step
of the original offline procedure involves overlap-adding
all optimal pulse kernels over time to form a global pulse
functionT : Z - R,y:

n+N

)y Kf(n)

t=n-N

I(n) = ‘ (6)

This curve, which reveals predominant local pulse (PLP)
information, is referred to as the PLP curve. To reach its
final state, the PLP function I' undergoes two additional
computation steps, included in Equation 6: normalization
and half-wave rectification. The constant

C=3 W) (7)

n=—N
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ensures the normalization of the PLP function, keep-
ing the values T(n) within the range of [-1 : 1]. With
halfwave rectification, we only consider the positive val-
ues of the PLP function, where |x|,, := x for a non-
negative real number x and |x|,, := O for a negative
number x. For a more detailed description, we refer to
Grosche and Muller (2011).

3 REAL-TIME PROCEDURE

MIR is an area of research that often deals with the
analysis of entire corpora. The algorithms used for these
analyses typically operate offline. In contrast to this,
the algorithms used for real-time analysis face multiple
challenges. This includes working with causal data only,
addressing the trade-off between accuracy and latency,
and meeting audio processing deadlines, as discussed by
Stefani and Turchet (2022). In adapting our model from
offline to real-time (Section 3.1), we encountered three
significant differences, which we discuss in more detail
in the following subsections. First, data is streamed in
small blocks, requiring the balancing of latency and com-
putation times (Section 3.2). Second, only causal data
is available, affecting the overall accuracy of the beat
tracker (Section 3.3). Third, data needs to be stored in
buffers, enabling access to previous time frames for han-
dling larger context windows (Section 3.4).

3.1 REAL-TIME PLP ALGORITHM

The original offline procedure outlined in Section 2 can
be transformed into a real-time procedure, as depicted
in Figure 1 (right column). Given the centric nature of the
kernels x, around each time position n, the kernel window
W is essentially divided into two halves, see Figure 1d.
The left half of the kernel window supporting [-N : 0]
is utilized to compute the pulse structure based on past
and present data, while the right half supporting (0 : NJ
is used to extrapolate this pulse structure to future time
positions. This allows the superimposed kernels x, to pre-
dict future beat positions, as illustrated in Figure 1e.

To describe the real-time procedure, we update the
equations in Section 2 as follows. Let n, denote the cur-
rent time position, where we have access to activation
values A(n) for all time positions n < n,. The complex-
valued Fourier coefficient F(n,w) from Equation 1
becomes

F'(n,w)y= 3%, A(mM)- W(m —n) - exp(=2miwm), (8)
m=n-N
which is defined for all time positions n < n,, frequencies
w € R,,, and local time indices m € [n—N : n]. For the
current time position n,, we obtain a real-time PLP func-
tioncalled T, @ [-oo : Ng +N] = R

no

1
Fno(n) = E Z Kt’(n)s (9)

t=n-N

which is defined for all time positions n € [-o0 : Ny + N]
and has access to all kernels «, for ¢ € [n—N:n,]. For
normalization, we use the constant C from Equation 7,
which ensures that the values T, (n) lie within the range
of [-1 : 1]. Additionally, for the real-time PLP function,
we choose to skip half-wave rectification and preserve a
more sinusoidal state to better capture dynamic pulse
changes over time. Note that the kernels x, are computed
based on F'(n, w) (Equation 8), denoted with 77'(n, 7) for
the Fourier tempogram (Equation 2), 7, for the tempo
parameter (Equation 4), and ¢, for the phase (Equation 5).
The PLP buffer, depicted in Figure 1e, displays only the
section of T, (n) for n € [n, —N:n, + NJ, containing all
the necessary information to compute the subsequent
time position n,. Note that for this buffer, our perspec-
tive shifts from a linear time scale to a centric viewpoint,
where the center of the buffer represents the current
time position n, (which corresponds to the physical buffer
time position t = 0, as illustrated in Figure 2).

3.2 AUDIO STREAMING

The main difference between offline and real-time pro-
cessing lies in how datais delivered. In offline processing,
the entire audio track is available at any time. Conversely,
in real-time processing, audio data is streamed continu-
ously as it becomes accessible. Streamed audio is com-
monly processed in small blocks of data known as frames,
which directly correspond to the time positions n intro-
duced in Section 2. Each frame contains a fixed frame
size M € N of recent audio data sampled at a fixed audio
sampling rate F,. The duration of a single frame is called
frame period T, as given by the equation

T= - (10)
Consequently, when we receive a frame of data, we
are inherently operating with a latency equivalent to one
frame period T. For example, if a real-time system runs
with an audio sampling rate F; = 44100Hz and a frame
size M = 512 samples, the system latency based on the
frame period is T = 512/44100 = 11.61ms. Reducing
the frame size M to minimize system latency is often not
feasible because the frame period T also determines the
available computation time per frame.

3.3 CAUSAL DATA PROCESSING

PLP operates with centric kernels «,, analyzing a specific
time position n within a larger context window W by uti-
lizing both past and future data, with local time indices
m € [n—N : n+ N]. However, for the real-time proce-
dure, only causal data is available, limiting the indices
tom € [n—=N : n]. While delaying the computation to
await future data is possible, this approach is not feasi-
ble for real-time applications. For this reason, in our real-
time model, we only utilize past and present data for PLP
computation. This helps avoid additional latency but also
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Figure 2 The output of the real-time beat tracking system: (a) Beat Detection (Section 4.1). (b) Beat Lookahead (Section 4.3). (c) Beat

Stability (Section 4.4). (d) Inter Beat Interval (Section 4.5).

impacts other aspects of the beat tracking pipeline, as we
will discuss in the following.

The tempogram J77(n,7) is based on only past and
present activation data, which has multiple effects. First,
the data for calculation is essentially half the size and
therefore less accurate. Second, the lack of future data
makes it harder to adapt to upcoming tempo changes.
Third, the activation data displays a discontinuity, abruptly
dropping to zero due to the absence of future data. This
discontinuity introduces artifacts, manifesting as vertical
lines in the tempogram, as depicted in Figure 1c.

The real-time PLP function T, incorporates only past
and present kernels x,, as we restrict the kernel summa-
tion in Equation 9 to local time indices € € [n—N : ng].
Consequently, the right half of the PLP buffer, which rep-
resents future pulse data, consistently exhibits a falling
slope due to the absence of overlapping kernels on that
side of the buffer. This leads to less prominent peaks in
the PLP buffer T, (n) for n € [n, —N:n, + N] character-
ized by overall lower amplitude values, as illustrated in
Figure le.

3.4 DATA BUFFERING

Compared to a single frame size M, the kernel window W
for PLP is relatively long, typically utilizing kernel sizes K
of 4-12 s. Therefore, a single frame of audio data is insuf-
ficient for computing PLP, and it is necessary to collect
and store frames in a buffer. To achieve this in a memory-
efficient manner, we buffer only as much data as nec-
essary to compute the current frame. For this purpose, a
First-In-First-Out circular buffer is utilized, where the old-
est values are dropped as new values are added. For real-
time PLP, there are two computations where buffers are
needed. First, to compute a kernel, an activation buffer

with half kernel size K is required (K, = N + 1), support-
ing [=N : 0]. Second, to overlap-add kernels with previ-
ous kernels, a PLP buffer with full kernel size K is needed
(Knp = K = 2N + 1), supporting [-N : N]. The PLP
buffer is fully described by T, (n) for the section n e
[ng —N:ny+ NJ]in Equation 9.

4 SYSTEM OUTPUT

The primary objective of the real-time procedure
(Section 3) is to update the PLP buffer with every new
frame of data, thereby generating all the system output,
as we will discuss in the following subsections.

4.1 BEAT DETECTION

With Figure 2a, we demonstrate the process of beat
detection in our real-time beat tracking system. For offline
processing, the goal of beat detection is to compile a list
of beat positions, indicating when beats occur relative to
the start of an audio track. For real-time audio stream-
ing, the objective of beat detection is to determine if a
beat should be triggered at the current time position n,.
This is achieved by analyzing the current state of the PLP
buffer and using a simple peak picking method to iden-
tify peak positions P = {p;, p,,...} within the section
n € [Ny —N:ny+ NJ. If a peak p; € P falls at the center
time position of the PLP buffer (p; = n,), a beat occurs
at the current time position n, and should be triggered
immediately.

4.2 BEAT CONTEXT

Even though the beat detection method outlined in
Section 4.1 primarily focuses on the center time posi-
tion n, of the PLP buffer, every peak p, € P provides
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additional valuable information. They create a form of
beat context around the current time position ny, giving
insights into both past and potential future beat posi-
tions. This functionality proves useful for real-time appli-
cations, as demonstrated in Section 7.2. The extent to
which past and future information is available can be
adjusted by modifying the PLP kernel size K. However,
this also affects how sensitive the beat tracker is to
tempo variations in the music: Increasing the kernel size
K reduces the tracker’s sensitivity to tempo fluctuations.
Conversely, decreasing the kernel size K enhances the
tracker’s responsiveness to tempo changes.

4.3 BEAT LOOKAHEAD

For beat detection, as discussed in Section 4.1, we typi-
cally use the center position n, of the PLP buffer as the
“decision line.” However, by considering the beat context
(Section 4.2), we can shift this decision line to any time
position n € [n, — N : ny + N], including future time posi-
tions n > n,, as illustrated in Figure 2b. To achieve this,
we introduce the beat lookahead, an input parameter
influencing the real-time beat tracking system’s behav-
ior. Instead of detecting beats at the center time position
n, of the PLP buffer, the beat lookahead defines an offset,
to move the decision line by a fixed number of frames to
detect and trigger beats ahead of time.

Although triggering beats earlier may not appear intu-
itive, it becomes a valuable solution in addressing sig-
nificant latency issues inherent in most real-time appli-
cations. These delays often arise from various sources,
including audio processing, network communication, or
input controller lags. Therefore, the beat lookahead is cru-
cial for compensating for these latencies and ensuring
synchronization between the analyzed input signal and
the generated output signal.

However, predicting beats ahead of time comes with
a trade-off: the accuracy of beat detection diminishes to
some extent, which we elaborate on in Section 6.4.

4.4 BEAT STABILITY

Every time beat detection (Section 4.1) occurs, the PLP
function T, can have varying amplitude values T, (p;)
for peak positions p; € P, which directly fall at the deci-
sion line, such as the center time position of the PLP
buffer (p; = ny). These amplitude values serve as indica-
tors of beat stability, as depicted in Figure 2c. A high peak
amplitude T, (p;) signifies a stable beat situation, indicat-
ing that the neighboring optimal kernels x, were similar
in tempo and constructively added up over time (con-
structive interference). Conversely, a low peak amplitude
indicates an unstable beat situation, where neighboring
optimal kernels x, with different tempi have canceled
each other out (destructive interference). To this end,
beat stability values can be utilized to control parame-
ters in real-time applications, such as the volume of an
accompaniment track, as detailed in Section 7.1.

Between the minimum and maximum peak ampli-
tudes lies an entire stability range. Since the PLP func-
tion L, is normalized (see constant C from Equation 7),
the beat stability can have values between [0 : 1]. In
this way, the peak amplitudes act as a confidence met-
ric that can be used in addition to beat detection. For
example, if an application requires consistent beat out-
put sequences without unstable and noisy beat sections,
a stability threshold can be introduced. This threshold can
serve as an optional beat filter that allows beats to be pro-
cessed only when they surpass a certain amplitude value,
as we will discuss in Section 7.2.

4.5 INTER BEAT INTERVAL AND LOCAL TEMPO
Providing a local tempo measure for the current time
position ny is particularly beneficial for interactive music
making (Section 7.1), where the tempo can serve as an
input parameter for time-based music instruments and
effects plugins (e.g., sampler, reverb, delay, or echo). With
PLP, we have two different approaches for determining
local tempo. First, on the frame level, the PLP kernel x,
is calculated based on the tempo parameter 7./, which
directly yields a local tempo value. Second, the PLP func-
tion T, offers a more consistent tempo measure, defined
by the inter beat interval of two consecutive peaks, as
illustrated in Figure 2d.

The tempo output can be bounded by setting min-
imum and maximum tempo values for the PLP proce-
dure, thereby defining a specific tempo range ©. Modi-
fying this tempo range allows us to influence the pulse
level at which the beat tracker should operate, such as
the normal tactus level (quarter notes) or one tempo
octave higher with double tactus level (eighth notes). For
instance, if the expected tempo for a beat tracking appli-
cationis around 100 BPM, we can focus the tempo output
on the range ® = [80 : 120] for normal tempo or choose
©® =[180 : 220] to force double tempo output.

5 EXPERIMENTS

To evaluate the described methods, we carry out multi-
ple experiments. First, we compare our method with vari-
ous low-latency beat trackers under specific oracle condi-
tions and against methods from the existing literature for
beat performance, latency, and tempo range. With the
second experiment, we concentrate on an assessment
of context-sensitive beat evaluation on different tempo
ranges. Third, we evaluate our real-time procedure across
different kernel sizes. Last, in the fourth experiment, we
investigate the impact of the lookahead parameter on
beat detection performance.

5.1 DATASETS
For our experiments, we employ a diverse set of com-
monly used datasets. We report on the average track
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duration, tempo, and stability in Table 1. To calculate
tempo stability, we convert all inter beat intervals to
tempo values and normalize them by dividing each by its
respective average track tempo, maintaining a tolerance
interval of +£4% for stable tempi. For a formal definition of
tempo stability, we refer to Schreiber et al. (2020).

The Ballroom dataset, introduced by Gouyon et al.
(2006), provides audio excerpts categorized by different
dance music styles, displaying a wide variety of tempo
ranges. GTZAN, described by Tzanetakis and Cook (2002),
comprises audio excerpts spanning a diverse range of
genres, including Country, Metal, Hiphop, Reggae, Jazz,
and Classical. The Rock dataset, as introduced by Clercq
and Temperley (2011), features songs listed in Rolling
Stone magazine’s “500 Greatest Songs of All Time” and
generally exhibits lower overall tempo stability compared
to the other datasets. Additionally, the RWCPop dataset,
described by Goto et al. (2002), provides a collection of
pop songs with full audio recordings and high tempo
stability.

Figure 3 offers an overview of the datasets, showing
that Rock and particularly GTzaN include tempo values

219

exceeding the range ® = [30 : 240] handled by our
online model, see also Section 5.5. Given that online
models typically function within a more limited tempo
spectrum compared to offline models, it is important
to note that the wider tempo span of these datasets
could potentially affect the overall performance of beat
estimation.

5.2 ACTIVATION FUNCTIONS

For the activation functions, we explored two distinct
online methods. The first method (RNN) involves a
machine learning approach, utilizing an online Recur-
rent Neural Network (RNN) activation with a specifically
chosen single Long Short-Term Memory (LSTM) model
(Bock and Schedl, 2011). In particular, we adopted
the approach utilizing madmom’s RNNBeatProcessor
(online=True) along with their pre-trained LSTM
model 4 (Bock et al., 2016a). It is worth noting that
these LSTM models are trained on the Ballroom dataset
and therefore may exhibit superior performance on it
compared to other datasets. The second method (GT)
is a “ground truth” activation, which is derived from

Dataset Dataset (Total) Track (Average)
Name Tracks Length Type Duration Tempo Stability
Ballroom 698 6h 03m Excerpt 31+ 1s 129.7 +39.7 BPM 89.0+13.4 %
GTZAN 993 8h 16m Excerpt 30+ Os 119.4 + 39.6 BPM 90.5+17.2 %
Rock 200 12h 53m Full 232+91s 115.7 + 34.7 BPM 81.6+15.0 %
RWCPop 100 6h 46m Full 244 + 41 s 111.7 + 27.3 BPM 97.9+10.8 %
Table 1 Overview of the datasets used for evaluation.
Ballroom GTZAN
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Figure 3 Beat-wise distribution of inter beat intervals (IBI) in various datasets, considering a tempo resolution bin size of 5 BPM. The
tempo range for our online model (30-240 BPM) is indicated with dashed lines.
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annotated beat positions. For each time position n, it
outputs an amplitude value of 1 at annotated beat
positions and 0 otherwise. To achieve this, we convert
annotated beat positions (in seconds) into frame indices
based on the frame period T (see Equation 10). This
approach is valuable for analyzing post-processing meth-
ods independently of the activation, assuming best pos-
sible activation performance.

5.3 POST-PROCESSING METHODS

In this paper, the term “post-processing” is used for a
beat tracking method that determines beat positions
from an activation function. Specifically, our PLP-based
post-processor takes an activation function as input, gen-
erates the PLP pulses as described in Section 2, and
detects the beats accordingly. For our experiments, we
outline the following post-processing methods: As a
baseline reference, labeled as PLP-0f £, we use the orig-
inal PLP concept to directly compare the transition from
offline to online. Our online adaptation of the original PLP
method is referred to as PLP-On.

5.4 EVALUATION MEASURES

For evaluating beat estimation, we employ the standard
F1-score metric with a tolerance window of +70 ms,
as implemented in mir eval (Raffel et al., 2014). For
context-sensitive evaluation, we apply the L-correct met-
ric, as introduced by Grosche and Mdller (2011). With this
evaluation method, we consider not just a single beat
but a series of consecutive estimated beats, each with
a temporal context of length L € N,,. This is similar to
how a listener would tap along to music, often needing
a sequence of beats to adapt to tempo changes. There-
fore, context-sensitive evaluation is valuable for evaluat-
ing how well our method can handle larger beat contexts
(Section 4.2). To avoid initialization artifacts in the evalu-
ation, we disregard all beats occurring before 5 s of each
music track.

5.5 EXPERIMENT SETUP

For our experiments, we focus on an application-ready
setup, using an audio sampling rate F, = 44100Hz and
a frame size M = 512 samples. These configurations are
typical for real-time audio hardware, such as an audio
interface, resulting in a frame period T = 11.61 ms.
The default tempo range for our experiments is ® =
[30 : 240], unless stated otherwise. With a tempo of 30
BPM, the beat events are 2 s apart, which can be consid-
ered as approaching the lower bound of human tempo
perception. With an upper tempo of 240 BPM, we cover a
full range of three tempo octaves (doubling the tempo of
30 BPM for three times). With TR40, we denote a tempo
range of +40% of the average track tempo, assuming that
the mean tempo of a music recording is given. Through-
out this paper, we consistently use the PLP method with

afixed kernel size K = 2N+1 of 6 s for all experiments and
examples. Further discussion on this choice is provided in
Section 6.3.

6 RESULTS AND DISCUSSION

6.1 OVERVIEW AND METHODS COMPARISON

In Table 2, we compare various beat tracking methods
for Fl-score, latency, and tempo range to assess the
performance of our models on the GTZAN dataset. The
latency values listed are based on the individual frame
period T of each respective method (see Equation 10).
Our default online model RNN-PLP-On uses the RNN
activation as input for the PLP-0On post-processing and
achieves an F1-score of 74.72%, which falls within the
range of most other online beat trackers. However, our
approach has only a very small latency of 11.61 ms.
The leading online model in our list, BEAST-1, achieves
an Fl-score of 80.04%, but it comes with a significantly
higher latency of 46.44 ms. This delay could be per-
ceived as distinct acoustic events by human ears, mak-
ing it unsuitable for certain real-time audio applications
where precise synchronization between input and out-
put audio streams is important. Furthermore, we intro-
duce RNN-PLP-On-Zero with an Fl-score of 74.68%,
which stands out as the only model in the table with a
latency of 0 ms. Zero latency is achieved by offsetting
the frame period T = 11.61ms (see RNN-PLP-0On) with
a lookahead of 1 frame, allowing beats to be triggered
11.61 ms ahead of time. With RNN-PLP-On-TR40 and
GT-PLP-On, we showcase potential enhancements of
our online model when utilizing oracle conditions, such as
a known average tempo range (TR40) or a perfect ground
truth activation function (GT). In addition, we report
on offline PLP models RNN-PLP-Of £, providing a more
comprehensive comparison between offline to online
processing.

6.2 CONTEXT-SENSITIVE EVALUATION ON TEMPO
RANGE
With Figure 4 we report on results using the context-
sensitive L-correct metric for different tempo ranges.
When analyzing our online model PLP-0n with the acti-
vation function RNN, we observe a decrease in F1-score
from 74.72% (no context) to 52.66% (L = 2). This reflects
the fact that detecting a series of beats accurately is
more challenging than detecting a single beat. Further
increasing the number of consecutive beats from L = 2
to L = 8, the Fl-scores remain almost constant, with a
slight decrease of about 3.09% (from 52.66% to 49.57%).
This implies that the PLP method is inherently designed
to effectively handle larger beat contexts, a characteris-
tic that holds true for the online method as well.

When analyzing RNN-PLP-0On-TR40, which utilizes a
tempo range of +40% of the average track tempo, we
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Model Mode Comments F1-score (%) Latency (ms) Tempo (BPM)
RNN-PLP-On Online our model 74.72 11.61 30-240
RNN-PLP-On-Zero Online our model (zero latency) 74.68 0.00 30-240
Exploratory Studies: Oracle Conditions
RNN-PLP-On-TR40 Online (c1) use avg. track tempo 75.11 11.61 track (mean) +40%
GT-PLP-On Online (c2) use GT activation 91.93 11.61 30-240
RNN-PLP-Off Offline (c3) use non-causal data 79.07 - 30-240
RNN-PLP-Off-TR40 Offline (c4) use avg. track tempo 82.00 - track (mean) +40%
GT-PLP-Off Offline (c5) use GT activation 97.83 - 30-240
Methods Overview: Comparing with Literature
BEAST-1 Online Chang and Su (2024) 80.04 46.44 55-215
Novel-1D Online Heydari et al. (2022) 76.48 20.00 55-215
BeatNet Online Heydari et al. (2021) 75.44 20.00 55-215
Bock-FF Online Bock et al. (2014) 74.18 46.44 55-215
SpecTNT-TCN Offline Hung et al. (2022) 88.7 - -
Transformer Offline Zhao et al. (2022) 88.5 - -
TCN Offline Bdck and Davies (2020) 88.5 - -

Table 2 Comparing various low-latency online beat trackers under specific conditions (c1, ..., 5) and against existing literature

for beat performance, latency, and tempo range, utilizing the GTzaN dataset. A tempo range of +40% of the average track tempo

is denoted by TR40 and ground truth activation by GT.
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Figure & F1-score and L-correct metric for different activation functions and various post-processing methods on the GTzaN dataset.

A tempo range of +40% average track tempo is denoted by TR40.

notice a much smaller decrease in F1-score from 75.11%
(no context) to 71.61% (L = 2). Furthermore, for all other
consecutive beats from L = 2 to L = 8, the F1-scores
remain consistently higher compared to RNN-PLP-0On,
with only a slight decrease of approximately 5.74% (from
71.61% to 65.87%). Similarly, for the activation func-
tions GT depicted in Figure 4b, we observe consistent
F1-scores, particularly evident for the tempo range TR40.
This suggests that a notable improvement in context-
sensitive beat performance can be achieved if the aver-
age tempo of the analyzed music is known and uti-
lized for specific beat tracking tasks, thus highlighting the

tempo range as a valuable hyperparameter for control-
ling real-time applications.

6.3 KERNEL SIZE EVALUATION

InFigure 5, we assess our real-time procedure across var-
ious kernel sizes. Considering the best possible activation
function GT in Figure 5b, we observe consistent behav-
ior across all datasets. When the kernel size is above 6 s,
the F1-score remains stable; however, when it falls below
6 s, the Fl-score starts to drop significantly. Based on
this observation, we opted to fix the kernel size at 6 s
for our experiments, aiming to find a balance between
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stability in beat estimation and responsiveness to tempo
changes in the music. A more realistic scenario is depicted
with the activation function RNN in Figure 5a. In this case,
we observe minimal variation in F1-score across different
kernel sizes across various datasets. The F1-score begins
to decrease only when the kernel sizes fall below 3 s.
This suggests that our real-time procedure can effectively
accommodate a wide range of kernel sizes, enabling
adjustment of the beat context with minimal impact on
F1-score.

6.4 LOOKAHEAD IMPACT ANALYSIS
We now discuss the impact of the lookahead parame-
ter on the beat detection performance and start with

RNN Activation Function
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Figure 6a, focusing on RNN and GTZAN as an exam-
ple. The corresponding data is reported in Table 3. For
a lookahead of 0 frames (0 ms), the Fl-score is at
74.72%, which we already reported for RNN-PLP-On in
Table 2. Using a lookahead of 1 frame (11.6 ms), there
is only a small difference (-0.04%) in Fl-score for a
total of 74.68%. Using a 10-frame lookahead (116.1 ms)
results in 74.31% (—=0.41%), which is useful for compen-
sating network and processing delays, as demonstrated
in Section 7.1. With 50 frames (580.5 ms), comparable to
the inter beat interval size (500 ms) at 120 BPM, the F1-
score drops to 72.39% (—2.33%). At 100 frames (1161.0
ms), the F1-score falls to 69.49% (—5.23%), and at 200
frames (2322.0 ms), it declines significantly to 61.54%

(b) GT Activation Function
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Figure 5 F1-score for different kernel sizes of PLP-0n across various activation functions on different datasets.
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Figure 6 F1-score of various settings for lookahead of PLP-0n for various activation functions across different datasets, see Table 3 for

numbers.
Settings F1-score (%) vs. Lookahead
Lookahead in 0(0.0) 1(11.6) 10(116.1) 50 (580.5) 100 (1161.0) 200 (2322.0)
frames (ms)
GTZAN 74.72 74.68(—0.04) 74.31(=0.41) 72.39(-2.33) 69.49(—5.23) 61.54(-13.18)
z Ballroom 84.39 84.34(—0.05) 83.87(-0.52) 81.98(—2.41) 78.95(—5.44) 70.94 (—13.45)
" RWCPop 78.22 78.21(-0.01) 78.15(—0.07) 77.80(—0.42) 77.52(—0.70) 73.38 (—4.84)
Rock 79.74 79.72(-0.02) 79.55(-0.20) 78.45(—1.29) 76.74(—3.00) 69.55(-10.19)
GTZAN 91.93 91.87(-0.05) 91.40(-0.52) 89.39(—2.54) 86.62 (—5.31) 73.27(-18.65)
., | Ballroom 9444 94.39 (—0.06) 93.89 (-0.55) 91.63(—-2.81) 88.51(-5.93) 75.98(—18.46)
’ RWCPop 96.10 96.08 (—0.02) 95.92 (-0.18) 95.71(-0.39) 95.64 (—0.46) 79.20(-16.90)
Rock 95.39 95.36(—0.03) 95.10(-0.28) 93.70(-1.69) 90.93 (—4.45) 72.33(-23.06)

Table 3 The F1-score of lookahead settings in frames (and milliseconds) of PL.p-0n for different activation functions across different
datasets, with each F1-score accompanied by the difference (in parenthesis) to the zero lookahead.
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(—13.18%). Overall, the impact of lookahead on the F1-
score is relatively small, especially for values below 50
frames (580.5 ms), emphasizing its importance as a valu-
able parameter for controlling and compensating latency
in real-time beat tracking systems.

Comparing different datasets for lookahead perfor-
mance, we observe a correlation with the tempo devia-
tion of each dataset (see Table 1), which indicates the
level of tempo variation across all songs. The dataset
RWCPop exhibits the highest stability (97.9 + 10.8%) and
the lowest tempo deviation (+27.3 BPM) among the
datasets analyzed, experiencing the smallest drop in F1-
score (—4.84%) at 200 frames lookahead. In contrast, at
200 frames lookahead, Rock (+34.7 BPM), GTZAN (+39.6
BPM), and Ballroom (+£39.7 BPM) experience drops in
F1-score of —10.19%, —13.18%, and —13.45%, respec-
tively. This suggests that lookahead can be employed
with minor impact on beat detection performance, par-
ticularly for highly stable music genres such as Pop. This
is particularly evident in the case of GT, Figure 6b, where
the RWCPop dataset demonstrates stable F1-scores for
up to 2 s of lookahead, distinguishing itself from other
datasets.

Note that all datasets in Figure 6 show higher F1-
scores for negative lookahead (adding latency to make a
more accurate decision by waiting for future data). How-
ever, since our focus is more on compensating for latency
rather than adding latency for real-time applications, we
do not discuss this fact any further.

7 APPLICATIONS

In this section, we present two application prototypes for
interactive music making (Section 7.1) and educational
music gaming (Section 7.2) that utilize the system output
of our real-time beat tracker in a creative way.

7.1 INTERACTIVE MUSIC MAKING

We start off with a demo for interactive music making,
closely following the work by Meier et al. (2021). The ter-
minal application, named “Beat Command Line Inter-
face” (beatcli.py), is implemented in Python and built
upon the real-time procedure detailed in Section 3.

With Figure 7, we show a block diagram of the
application. It accepts input arguments () to select a
device/channel of the audio input (B) and configure var-
ious parameters required for the audio analysis (c). It
continuously executes a complete PLP real-time proce-
dure and uses data buffering (Section 3.4) to update the
PLP model for every new frame of audio provided by the
input audio streaming (Section 3.2). Upon beat detec-
tion (Section 4.1) within the current time frame, both
terminal output (D) and network output (E) with corre-
sponding local pulse information are provided, as shown

—(®
@ beatcli.py @

Args Device

@? 2O 0| 20 O

Network DAW

A 4

v

Audio Analysis  Terminal

® @ Audio ----1Text — OSC

Figure 7 A block diagram of the beatcli.py terminal
application. (&) Input arguments. (B) Audio input. (C) Audio
analysis. (D) Terminal output. () Network output. (F) Receiving
software. (G) Receiving hardware.

000 bestlpy — 2sh— 70022
(.myenv) » applications git:(develop) python beatcli.py -h
usage: beatcli.py [-h] [--device ID] [--channel NUMBER]
[--samplerate FS] [--blocksize SAMPLES]

[-—tempo LOW HIGH] [--lookahead FRAMES]
[--kernel SIZE] [--ip IP] [--port PORTI

Beat (C)ommand (L)ine (I)nterface.

optional arguments:
—h, —-help
—-device ID
——channel NUMBER
——samplerate FS (44100) samplerate for sounddevice
——blocksize SAMPLES (512) blocksize for sounddevice
——tempo LOW HIGH ([60, 1801) tempo range in BPM
—-lookahead FRAMES (@) number of frames (samplerate / blocksize)

to lookahead in time and get the next beat

show this help message and exit
(6) device id for sounddevice input
(10) channel number for sounddevice input

earlier to compensate for latency
(6) kernel size in seconds
—ip IP (0.0.0.0) ip address for 0SC client

——kernel SIZE
——port PORT (5005) port for 0OSC client
(.myenv) » applications git:(develop) i

Figure 8 The help function of the beatcli. py application with
information about input arguments.

in Figure 9. This system output (Section 4) can be received
by software clients (), such as a Digital Audio Worksta-
tion (DAW), or hardware devices (G), such as microcon-
trollers, to utilize the transmitted local pulse information.

The help function of beatcli.py (Figure 8) offers
detailed explanations of the input arguments. The real-
time audio streaming (Section 3.2) relies on the Python
module sounddevice,® which receives the first four
arguments to specify the desired hardware. The next
three arguments control the settings of the beat tracker,
including the tempo range in BPM to set the pulse level,
the lookahead (Section 4.3) in FRAMES to compensate
for latency, and the kernel SIZE in seconds to deter-
mine the beat context (Section 4.2). Last, two arguments
configure the network output. beatcli.py serves asan
Open Sound Control (OSC) server, sending pulse infor-
mation over the network to a client with a specified 1P
address and PORT number.

With Figure 9, we illustrate the terminal output of
beatcli.py, detailing the transmitted pulse informa-
tion. Upon application launch, an overview of default set-
tings is provided. Below this follows a table of detected
beats, each row containing columns with local pulse
information. Initially, the 1P address and PORT of the
0SC message being sent out are displayed. Subsequently,
a time value provides a timestamp of when the beat
detection (Section 4.1) occurred. Following this, a tempo
value indicates the local tempo computed from the inter
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(.myenv) - applications git:(develop) python beatcli.py
Beat (C)ommand (L)ine (I)nterface: {'device': 6, 'channel': 10, 'sampl

': 44100, 'blocksize': 512, 'tempo': [60, 1801, 'lookahead': 0, '
08 @y 4" 0', 'port': 5005}

:59.998 tempo=60 stability=1.000
:01.083 tempo=120 stability=1.000

.582 tempo=120 stability=0.585

.081 tempo=120 stability=1.000
:02.580 tempo=120 stability=0.933
:03.079 tempo=120 stability=1.000
:03.579 tempo=120 stability=1.000

104.078 tempo=120 stability=1.000
¢ time=13:41:04.577 tempo=120 stability=1.000
: time=13:41:05.076 tempo=120 stability=1.000

0

0

0

0

0.0.
0.0.0.0:
0

0

(]

0

——— beat statistics ——

10 beats transmitted

tempo min/avg/max/stddev = 60.00/114.00/120.00/18.00
stability min/avg/max/stddev = 0.585/0.952/1.000/0.124
(.myenv) » applications git:(develop) il

Figure 9 The terminal output of the beatcli. py application
showing the system in action.

beat interval (Section 4.5). Finally, a value for beat stabil-
ity (Section 4.4) is displayed. A value of 1.0 represents a
beat with a steady tempo and maximum stability, while
values close to zero signify a relatively unstable tempo
and beat structure.

To demonstrate a real-world use case of the appli-
cation, we describe a real-time accompaniment system
using beatcli.py. Suppose we are playing an instru-
ment and intend to utilize our beat tracker to trigger
samples in a DAW synchronized with the beat of our
music. The stability parameter allows us to control the
volume, ensuring that samples are only audible when
beats are stable. With every beat we update the global
tempo of the DAW, thereby adjusting the playback speed
of the samples to match the tempo of our playing. With
the tempo range settings, we can limit the beat trig-
gers to certain tempo octaves, accommodating differ-
ent tempo variations such as normal, or double tempo.
The kernel size parameter allows us to adjust the over-
all beat context, making the tracker either more sta-
ble or more responsive to tempo changes. Finally, the
lookahead value enables us to fine-tune the system to
compensate for any noticeable network and processing
delays, ensuring that the playback feels natural and not
lagged.

7.2 EDUCATIONAL MUSIC GAMING

In this section, we introduced an application for educa-
tional music gaming, closely following the work by Meier
et al. (2022).

We present a prototype jump-and-run game named
“Rock Your Beats,” which is illustrated in Figure 10. The
player’s goal is to tap along in sync with the beat of the
music, by pressing a button on a touch screen, keyboard,
or gaming controller. In doing so, the player must aim
to hit moving “beat creatures” with a dropping rock posi-
tioned at the center of the game world. Each beat crea-
ture represents one beat, and one point is awarded for
each hit.

The game world is generated in real-time from music
in the player’s environment by using the streamed audio

@ Real-Time PLP Buffer (Stable Beat)
Past Future

300 T
1
]
1

200

100 -
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Beat
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Figure 10 The educational music game “Rock Your Beats”
(bottom) with the corresponding real-time PLP buffer (top), used
to derive the positions of “beat creatures” in the game world.

(Section 3.2) of a microphone input signal. The center of
the game world (the rock) represents the current point
in time and thus relates to the center of the PLP buffer
(at second zero), as discussed in Section 3.3. The beat
creatures are placed at the peak positions of the PLP
curve, using the beat context (Section 4.2). Therefore, the
beat creatures follow the same movement from the right
(future) to the left (past) positions as the peaks of the
PLP curve and cross the central player position in sync
with the beat of the music, as discussed in Section 4.1.
If no stable beat structure is detected in the input sig-
nal, the peaks of the PLP curve have a rather low ampli-
tude, as explained in Section 4.4. If this amplitude is
below a certain stability threshold, no beat creatures are
created in the game world, to avoid unpredictable and
noisy beat illustrations. As a consequence, beat crea-
tures only appear if music with a stable beat is played.
The time range that is visually represented in the game,
the game window, is closely related to the beat context
(Section 4.2). In this way, the game window can also be
chosen smaller to avoid the visualization of inaccurate
beat predictions in the distant future and to determine
how much visual support the player gets. The inter beat
interval (Section 4.5) can be used to display the current
local tempo in the game. Finally, with the beat lookahead
(Section 4.3), the game can be adjusted to compensate
for latency that might occur with the game visualization
and controller input delays. For a more detailed discus-
sion of this gaming application, we refer to Meier et al.
(2022).
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8 CONCLUSIONS

In this paper, we introduced a real-time beat tracking
system designed to deliver zero latency and enhanced
controllability for interactive music applications. In addi-
tion to beat detection, our model generates valuable
supplementary outputs, including beat context, beat sta-
bility, and inter beat interval analysis for local tempo
estimation. Leveraging the beat lookahead technique,
our method effectively compensates for latency by up
to several hundred milliseconds in real-time audio sys-
tems. Furthermore, our model demonstrates enhanced
controllability, allowing real-time applications to adjust
latency compensation, pulse level, and beat context.
This versatility proves particularly beneficial for real-time
beat tracking tasks, where maintaining synchronization
between the analyzed input audio stream and the pro-
duced output audio stream is crucial, thereby preventing
any noticeable delay in audio perception. We validated
and tested the capability of our model through experi-
ments and two real-world scenario applications focused
oninteractive music making and educational music gam-
ing. As a result, our model serves as a practical and
lightweight tool for musicians to fine-tune their real-time
audio setups and achieve the desired latency perception,
while also opening up new creative controllability for real-
time beat tracking applications.

For future research, our goals include conducting addi-
tional experiments, such as evaluating the lookahead
feature of our model on smaller tolerance windows
and investigating beat performance on more challenging
datasets. Additionally, we aim to enhance our real-time
pipeline by integrating newly developed beat activation
models into our post-processing method as they become
available in the future. Recognizing the practical utility of
our system, we are committed to continuing the devel-
opment of interactive applications and demonstrations.
Specifically, we plan to create a real-time beat tracking
audio plugin to enable musicians to use our method for
studio mixing or interactions live on stage.
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NOTES
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2. Note that the input to the PLP method can include both novelty func-
tions (such as spectral flux) and activation functions (such as the out-
put of a recurrent neural network).

3. https://pypi.org/project/sounddevice
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