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Chapter 4: Music Structure Analysis

4.1 General Principles

4.2 Self-Similarity Matrices

4.3 Audio Thumbnailing

44 Novelty-Based Segmentation
4.5 Evaluation

4.6 Further Notes

In Chapter 4, we address a central and well-researched area within MIR known
as music structure analysis. Given a music recording, the objective is to
identify important structural elements and to temporally segment the recording
according to these elements. Within this scenario, we discuss fundamental
segmentation principles based on repetitions, homogeneity, and novelty—
principles that also apply to other types of multimedia beyond music. As an
important technical tool, we study in detail the concept of self-similarity
matrices and discuss their structural properties. Finally, we briefly touch the
topic of evaluation, introducing the notions of precision, recall, and F-measure.

Music Structure Analysis

Example: Zager & Evans “In The Year 2525”
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Music Structure Analysis
Example: Zager & Evans “In The Year 2525”
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Music Structure Analysis

Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Music Structure Analysis

Example: Folk Song Field Recording
(Nederlandse Liederenbank)
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Music Structure Analysis

Example: Weber, Song (No. 4) from “Der Freischiitz”
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Music Structure Analysis

General goal: Divide an audio recording into temporal
segments corresponding to musical parts and group these
segments into musically meaningful categories.

Examples:

= Stanzas of a folk song

= Intro, verse, chorus, bridge, outro sections of a pop song
= Exposition, development, recapitulation, coda of a sonata
= Musical form ABACADA ... of a rondo




Music Structure Analysis

General goal: Divide an audio recording into temporal
segments corresponding to musical parts and group these
segments into musically meaningful categories.

Challenge: There are many different principles for creating
relationships that form the basis for the musical structure.

= Homogeneity: Consistency in tempo, instrumentation, key, ...

Music Structure Analysis

Novelty Homogeneity Repetition

= Novelty: Sudden changes, surprising elements ...
= Repetition: Repeating themes, motives, rhythmic patterns,...
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= Feature Representations

Feature Representation

General goal: Convert an audio recording into a mid-level
representation that captures certain musical properties
while supressing other properties.

= Timbre / Instrumentation

= Tempo / Rhythm

= Pitch / Harmony

Feature Representation

General goal: Convert an audio recording into a mid-level
representation that captures certain musical properties
while supressing other properties.

= Timbre / Instrumentation

= Tempo / Rhythm

= Pitch / Harmony




Feature Representation

Example: Chromatic scale

Feature Representation

Example: Chromatic scale
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Feature Representation

Example: Chromatic scale

Feature Representation

Example: Chromatic scale
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Feature Representation

Example: Brahms Hungarian Dance No. 5 (Ormandy)

l Feature extraction
Chroma (Harmony)
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Overview

= Self-Similarity Matrices

Self-Similarity Matrix (SSM)
General idea: Compare each element of the feature
sequence with each other element of the feature sequence

based on a suitable similarity measure.

— Quadratic self-similarity matrix

Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Idealized SSM
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Self-Similarity Matrix (SSM)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Idealized SSM
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Blocks: Homogeneity

Paths: Repetition

Corners: Novelty




SSM Enhancement
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SSM Enhancement

Block Enhancement

= Feature smoothing
= Coarsening

= Curved paths
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I Block Enhancement Challenge: Presence of musical variations
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Idea: Enhancement of path structure

SSM Enhancement

Shostakovich Waltz 2, Jazz Suite No. 2 (Chailly)

SSM Enhancement

Cost matrix "




SSM Enhancement
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Filtering along main diagonal

SSM Enhancement

Idea: Usage of contextual information (Foote 1999)
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= Comparison of entire sequences
= L = length of sequences
= ('L = enhanced cost matrix

~ smoothing effect

SSM Enhancement

Cost matrix '

SSM Enhancement
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SSM Enhancement
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Cost matrix ¢} with L = 20

Filtering along 8 different directions and minimizing

SSM Enhancement

Idea: Smoothing along various directions
and minimizing over all directions

CPM™n,m) = min CP* (n,m)

= slope, = [-th direction of smoothing
= ("7 — enhanced cost matrix w.r.t. slope,
= Usage of eight slope values

~+ tempo changes of -30 to +40 percent




SSM Enhancement

Path Enhancement

SSM Enhancement

Path Enhancement

= Diagonal smoothing
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SSM Enhancement

Further Processing

= Path extraction
= Pairwise relations
= Grouping (transitivity)
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SSM Enhancement

Further Processing

= Path extraction
= Pairwise relations
= Grouping (transitivity)
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SSM Enhancement
Example: Zager & Evans “In The Year 2525”
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SSM Enhancement
Example: Zager & Evans “In The Year 2525”
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SSM Enhancement

Example: Zager & Evans “In The Year 2525”
Missing relations because of transposed sections
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SSM Enhancement

Example: Zager & Evans “In The Year 2525”
Idea: Cyclic shift of one of the chroma sequences

One semitone up
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SSM Enhancement

Example: Zager & Evans “In The Year 2525”
Idea: Cyclic shift of one of the chroma sequences

Two semitones up
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SSM Enhancement

Example: Zager & Evans “In The Year 2525”
Idea: Overlay & Maximize === Transposition-invariant SSM
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SSM Enhancement

Example: Zager & Evans “In The Year 2525”
Note: Order of enhancement steps important!

Maximization Smoothing & Maximization
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Similarity Matrix Toolbox

Audie | [ Featwre
representation | representation

s BN

Meinard Muller, Nanzhu Jiang, Harald Grohganz
SM Toolbox: MATLAB Implementations for Computing and
Enhancing Similarity Matrices

http://www.audiolabs-erlangen.de/resources/MIR/SMtoolbox/

Overview

. Thanks:

= Jiang, Grosche
= Peeters
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= Mauch
= Sapp

Audio Thumbnailing

Audio Thumbnailing

General goal: Determine the most representative section
(“Thumbnail”) of a given music recording.

Example: Zager & Evans “In The Year 2525”
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Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Thumbnail is often assumed to be the most repetitive segment




Audio Thumbnailing

Two steps Both steps are problematic!

1. Path extraction "

2. Grouping "

Paths of poor quality (fragmented, gaps)
Block-like structures
Curved paths

Noisy relations
(missing, distorted, overlapping)
Transitivity computation difficult

Main idea: Do both, path extraction and grouping, jointly

= One optimization scheme for both steps

= Stabilizing effect
= Efficient

Audio Thumbnailing

Main idea: Do both path extraction and grouping jointly

For each audio segment we define a fitness value

This fitness value expresses “how well” the segment
explains the entire audio recording

The segment with the highest fitness value is
considered to be the thumbnail

As main technical concept we introduce the notion of a
path family

Fithess Measure

Enhanced SSM

Fithess Measure

Path over segment

= Consider a fixed segment

Fithess Measure

Path over segment

200 - 1
./ o
/ 05 = Consider a fixed segment

o = Path over segment

= |nduced segment
= Score is high

Fithess Measure

Path over segment

:
Ve
|/ 05 = Consider a fixed segment
150 f
s - o = Path over segment
= |nduced segment
100| i i
4 = Score is high
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& // = A second path over segment
£ s = Induced segment
o = Score is not so high




Fithess Measure

Path over segment
= Consider a fixed segment

= Path over segment
= |nduced segment
= Score is high

= A second path over segment
= |nduced segment
= Score is not so high

= A third path over segment
= |nduced segment
= Score is very low

Fithess Measure

05

RN

Path family
= Consider a fixed segment

= A path family over a segment
is a family of paths such that
the induced segments do
not overlap.

Fithess Measure

&1 )

Path family
= Consider a fixed segment

= A path family over a segment
is a family of paths such that
the induced segments do
not overlap.

This is not a path family!

Fithess Measure

05

N

Path family
= Consider a fixed segment

= A path family over a segment
is a family of paths such that
the induced segments do
not overlap.

This is a path family!

(Even though not a good one)

Fithess Measure

Optimal path family

= Consider a fixed segment

Fithess Measure

50 100 150 0

Optimal path family
= Consider a fixed segment

= Consider over the segment
the optimal path family,
i.e., the path family having
maximal overall score.

= Call this value:

Score(segment)

Note: This optimal path family can be computed

using dynamic programming.




Fithess Measure

Optimal path family

Fithess Measure

Fitness

200 1 200 1
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| / 05 = Consider a fixed segment / / 05 = Consider a fixed segment
150 150
4 o = Consider over the segment e o
the optimal path family,
100 i.e., the path family having 100
4 i 4
7/ maximal overall score. 7/
= Call this value:
7 ’
= / Score(segment) % /
5 T R = Furthermore consider the 5 T R
amount covered by the
induced segments. p:= Score(segment)
* Call this value: R:= Coverage(segment)
Coverage(segment)
Fitness Measure Fitness Measure
200 5 Fitness 200 5 Fitness
s ) , o/ , .
05 = Consider a fixed segment 05 = Consider a fixed segment
w L w L
i~ 0 = Self-explanation are trivial! i~ m = Self-explanation are trivial!
100 4 100 4
: : = Subtract length of segment
| | g g
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0 50 100 150 R 0 50 100 150 i
p= Score(segment) P = Score(segment) - length(segment)
R:= Coverage(segment) R:= Coverage(segment) - length(segment)

Fithess Measure

Fitness

200/ 1
v o
/ 05 = Consider a fixed segment
150] ey
i~ o = Self-explanation are trivial!
100 4
by = Subtract length of segment
w0 /_/ = Normalization
0 50 100 150 i

P :=Normalize( Score(segment) - length(segment) ) € [0,1]
R :=Normalize(Coverage(segment) - length(segment) ) € [0,1]

Fithess Measure

Fitness

200 1

/ :

I Ius = Consider a fixed segment
w L

oA ™y

ool ; Fitness(segment)

a Fi=2+P+R/(P+R)
% A

50 100 150 0

P :=Normalize( Score(segment) - length(segment) ) € [0,1]
R :=Normalize(Coverage(segment) - length(segment) ) € [0,1]




Thumbnail Thumbnail
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Thumbnail := segment having the highest fitness

Thumbnail
Fitness Scape Plot

>
>
>
>
§
S o : - E
] 50 100 150 200 o 50 100 150 200
> [a1]az]B1(B2) c [as[e3]es]

Example: Brahms Hungarian Dance No. 5 (Ormandy)




Thumbnail

Fitness Scape Plot
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Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Scape Plot

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Scape Plot

Coloring according
to clustering result
(grouping)

Example: Brahms Hungarian Dance No. 5 (Ormandy)

Scape Plot

Coloring according
to clustering result

(grouping)
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Example: Brahms Hungarian Dance No. 5 (Ormandy)
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Example: Zager & Evans “In The Year 2525”
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Overview

Thanks:

= Foote

= Serra, Grosche, Arcos
= Goto

= Tzanetakis, Cook

= Novelty-based Segmentation

Novelty-based Segmentation

General goals:

= Find instances where musical
changes occur.

= Find transition between
subsequent musical parts.
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Idea (Foote):

Use checkerboard-like kernel
function to detect corner points
on main diagonal of SSM.
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Idea (Foote):

Use checkerboard-like kernel
function to detect corner points
on main diagonal of SSM.
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Novelty-based Segmentation

Idea: Structure features
= Find instances where

structural changes occur.
= Combine global and local

aspects within a unifying

framework

Time

Novelty-based Segmentation

Structure features

= Enhanced SSM
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Novelty-based Segmentation

Structure features

= Enhanced SSM
= Time-lag SSM
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Structure features

= Enhanced SSM
= Time-lag SSM
= Cyclic time-lag SSM
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Novelty-based Segmentation

Structure features

= Enhanced SSM
= Time-lag SSM

g " Cyclic time-lag SSM
= Columns as features

Novelty-based Segmentation
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Novelty-based Segmentation
Example: Chopin Mazurka Op. 24, No. 1
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Novelty-based Segmentation
Example: Chopin Mazurka Op. 24, No. 1
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Novelty-based Segmentation
Example: Chopin Mazurka Op. 24, No. 1
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Conclusions

= Combined Approaches

= Hierarchical Approaches
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= Evaluation

« MIREX
= Explaining Structure " SALAMI-Project
= Smith, Chew
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