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Chapter 6: Tempo and Beat Tracking

Tempo and beat are further fundamental properties of music. In Chapter 6, we
introduce the basic ideas on how to extract tempo-related information from
audio recordings. In this scenario, a first challenge is to locate note onset
information—a task that requires methods for detecting changes in energy and
spectral content. To derive tempo and beat information, note onset candidates
are then analyzed with regard to quasiperiodic patterns. This leads us to the
study of general methods for local periodicity analysis of time series.

6.1 Onset Detection
6.2 Tempo Analysis
6.3 Beat and Pulse Tracking
6.4 Further Notes



Introduction

Basic beat tracking task:

Given an audio recording of a piece of music, 
determine the periodic sequence of  beat positions.

“Tapping the foot when listening to music’’



Time (seconds)

Example:      Queen – Another One Bites The Dust
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Example:      Queen – Another One Bites The Dust
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Time (seconds)



Introduction

Example:      Happy Birthday to you

Pulse level:  Measure



Introduction

Example:      Happy Birthday to you

Pulse level:  Tactus (beat)



Introduction

Example:      Happy Birthday to you

Pulse level:  Tatum (temporal atom)



Example:      Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo:          ???

Introduction



Example:      Chopin – Mazurka Op. 68-3

Pulse level: Quarter note

Tempo:          50-200 BPM
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Introduction

Example:      Borodin – String Quartet No. 2

Pulse level: Quarter note

Tempo:          120-140 BPM (roughly)

Beat tracker without any prior knowledge

Beat tracker with prior knowledge on 
rough tempo range



Introduction

 Pulse level often unclear

 Local/sudden tempo changes (e.g. rubato)

 Vague information

(e.g., soft onsets, extracted onsets corrupt)

 Sparse information

(often only note onsets are used)

Challenges in beat tracking



 Onset detection
 Beat tracking
 Tempo estimation

Tasks

Introduction



 Onset detection
 Beat tracking
 Tempo estimation

Tasks
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periodphase

 Onset detection
 Beat tracking
 Tempo estimation

Tasks

Introduction



Tempo := 60 / period

Beats per minute (BPM)

 Onset detection
 Beat tracking
 Tempo estimation

Tasks

period

Introduction



Onset Detection

 Finding start times of 
perceptually relevant acoustic 
events in music signal

 Onset is the time position 
where a note is played 

 Onset typically goes along 
with a change of the signal’s 
properties:
– energy or loudness
– pitch or harmony
– timbre



Onset Detection

[Bello et al., IEEE-TASLP 2005]

 Finding start times of 
perceptually relevant acoustic 
events in music signal

 Onset is the time position 
where a note is played 

 Onset typically goes along 
with a change of the signal’s 
properties:
– energy or loudness
– pitch or harmony
– timbre



Steps

Time (seconds)

Onset Detection (Energy-Based)

Waveform



Onset Detection (Energy-Based)

Time (seconds)

Squared waveform

Steps
1. Amplitude squaring



Onset Detection (Energy-Based)

Time (seconds)

Energy envelope

Steps
1. Amplitude squaring
2. Windowing



Onset Detection (Energy-Based)

Capturing energy changes

Time (seconds)

Differentiated energy envelope

Steps
1. Amplitude squaring
2. Windowing
3. Differentiation



Onset Detection (Energy-Based)

Time (seconds)

Novelty curve

Steps
1. Amplitude squaring
2. Windowing
3. Differentiation
4. Half wave rectification

Only energy increases are 
relevant for note onsets



Onset Detection (Energy-Based)

Time (seconds)

Steps
1. Amplitude squaring
2. Windowing
3. Differentiation
4. Half wave rectification
5. Peak picking

Peak positions indicate 
note onset candidates



Energy envelope

Onset Detection (Energy-Based)

Time (seconds)



Onset Detection (Energy-Based)

Time (seconds)

Energy envelope / note onsets positions



Onset Detection

 Energy curves often only work for percussive music

 Many instruments such as strings have weak note onsets

 No energy increase may be observable in complex sound 
mixtures

 More refined methods needed that capture
– changes of spectral content
– changes of pitch
– changes of harmony



1. Spectrogram
Magnitude spectrogram
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|| X Steps:
Onset Detection (Spectral-Based)

 Aspects concerning pitch, 
harmony, or timbre are 
captured by spectrogram

 Allows for detecting local 
energy changes in certain 
frequency ranges



Compressed spectrogram Y

|)|1log( XCY 

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression

Steps:

 Accounts for the logarithmic 
sensation of sound intensity

 Dynamic range compression
 Enhancement of low-intensity 

values
 Often leading to enhancement 

of high-frequency spectrum
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Spectral difference

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation

Steps:

 First-order temporal 
difference

 Captures changes of the 
spectral content

 Only positive intensity 
changes considered

Time (seconds)
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Spectral difference

t
Novelty curve

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation

Steps:

 Frame-wise accumulation of 
all positive intensity changes 

 Encodes changes of the 
spectral content
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Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation

Steps:

Novelty curve



Substraction of local average

Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization

Steps:

Novelty curve



Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization

Steps:

Normalized novelty curve



Onset Detection (Spectral-Based)

1. Spectrogram
2. Logarithmic compression
3. Differentiation
4. Accumulation
5. Normalization
6. Peak picking

Steps:

Normalized novelty curve



Logarithmic compression is essential

Novelty curve

Onset Detection (Spectral-Based)

Time (seconds)
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Ground-truth onsets

[Klapuri et al., IEEE-TASLP 2006]



C = 1

Onset Detection (Spectral-Based)

|)|1log( XCY 

Logarithmic compression is essential

Novelty curve

Ground-truth onsets

[Klapuri et al., IEEE-TASLP 2006]
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Onset Detection (Spectral-Based)
Logarithmic compression is essential

Novelty curve

Ground-truth onsets

C = 10

|)|1log( XCY 

[Klapuri et al., IEEE-TASLP 2006]
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Onset Detection (Spectral-Based)
Logarithmic compression is essential

Novelty curve

Ground-truth onsets

C = 1000

|)|1log( XCY 

[Klapuri et al., IEEE-TASLP 2006]

Fr
eq

ue
nc

y 
 (H

z)

Time (seconds)



Onset Detection (Spectral-Based)

 Spectrogram 

 Compressed Spectrogram

 Novelty curve 



Time (seconds)

Onset Detection

Peak picking

 Peaks of the novelty curve indicate note onset candidates



Time (seconds)

Onset Detection

Peak picking

 Peaks of the novelty curve indicate note onset candidates
 In general many spurious peaks
 Usage of local thresholding techniques
 Peak-picking very fragile step in particular for soft onsets



Onset Detection

Shostakovich – 2nd Waltz

Time (seconds)

Time (seconds)

Borodin – String Quartet No. 2 



Onset Detection

Drumbeat

Going Home

Lyphard melodie

Por una cabeza 

Donau



Beat and Tempo

 Steady pulse that drives music 
forward and provides the 
temporal framework of a piece 
of music

 Sequence of perceived pulses 
that are equally spaced in time

 The pulse a human taps along 
when listening to the music

[Parncutt 1994]

[Sethares 2007]

[Large/Palmer  2002]

[Lerdahl/ Jackendoff 1983]

[Fitch/ Rosenfeld 2007]

What is a beat?

The term tempo then refers to the speed of the pulse.



Beat and Tempo

 Analyze the novelty curve with 
respect to reoccurring or quasi-
periodic patterns

 Avoid the explicit determination 
of note onsets (no peak picking)

Strategy



Beat and Tempo

[Scheirer, JASA 1998]

[Ellis, JNMR 2007]

[Davies/Plumbley, IEEE-TASLP 2007]

[Peeters, JASP 2007]

Strategy

 Comb-filter methods
 Autocorrelation
 Fourier transfrom

Methods

[Grosche/Müller, ISMIR 2009]

 Analyze the novelty curve with 
respect to reoccurring or quasi-
periodic patterns

 Avoid the explicit determination 
of note onsets (no peak picking)

[Grosche/Müller, IEEE-TASLP 2011]



Definition: A tempogram is a time-tempo representation 
that encodes the local tempo of a music signal
over time. 
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Definition: A tempogram is a time-tempo represenation 
that encodes the local tempo of a music signal
over time. 

 Compute a spectrogram (STFT) of the novelty curve
 Convert frequency axis (given in Hertz) into 

tempo axis (given in BPM)
 Magnitude spectrogram indicates local tempo

Fourier-based method

Tempogram (Fourier)
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Tempogram (Fourier)

Novelty curve
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Tempogram (Fourier)

Novelty curve (local section)

Time (seconds)
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Windowed sinusoidal 

Tempogram (Fourier)

Time (seconds)
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Windowed sinusoidal 

Tempogram (Fourier)
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Definition: A tempogram is a time-tempo represenation 
that encodes the local tempo of a music signal
over time. 

 Compare novelty curve with time-lagged 
local sections of itself

 Convert lag-axis (given in seconds) into 
tempo axis (given in BPM)

 Autocorrelogram indicates local tempo

Autocorrelation-based method

Tempogram (Autocorrelation)



Tempogram (Autocorrelation)

Novelty curve (local section)
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Tempogram (Autocorrelation)

Windowed autocorrelation
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Tempogram (Autocorrelation)

Lag  =  0 (seconds)
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Tempogram (Autocorrelation)

Lag  =  0.26 (seconds)
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Tempogram (Autocorrelation)

Lag  =  0.52 (seconds)
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Tempogram (Autocorrelation)

Lag  =  0.78 (seconds)
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Tempogram (Autocorrelation)

Lag  =  1.56 (seconds)
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Time (seconds)

Tempogram
Fourier Autocorrelation
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Tempogram
Fourier Autocorrelation
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Tempo@Tatum = 210 BPM Tempo@Measure = 70 BPM
Time (seconds) Time (seconds)



Tempogram

Fourier Autocorrelation

Time (seconds) Time (seconds)
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Emphasis of tempo harmonics 
(integer multiples)

Emphasis of tempo subharmonics 
(integer fractions)

[Grosche et al., ICASSP 2010][Peeters, JASP 2007]



Tempogram (Summary)

Fourier Autocorrelation

Novelty curve is compared with
sinusoidal kernels each
representing a specific tempo

Novelty curve is compared with
time-lagged local (windowed) 
sections of itself

Convert frequency (Hertz) into
tempo (BPM)

Convert time-lag (seconds) into
tempo (BPM)

Reveals novelty periodicities Reveals novelty self-similarities

Emphasizes harmonics Emphasizes subharmonics

Suitable to analyze tempo on 
tatum and tactus level

Suitable to analyze tempo on 
tactus and measure level



Beat Tracking

 Given the tempo, find the best sequence of beats

 Complex Fourier tempogram contains magnitude 
and phase information

 The magnitude encodes how well the novelty curve 
resonates with a sinusoidal kernel of a specific tempo

 The phase optimally aligns the sinusoidal kernel with 
the peaks of the novelty curve

[Peeters, JASP 2005]



Beat Tracking
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[Peeters, JASP 2005]
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[Peeters, JASP 2005]
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[Peeters, JASP 2005]



Beat Tracking
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Beat Tracking

[Grosche/Müller, IEEE-TASLP 2011]



Beat Tracking

Novelty Curve

Predominant Local Pulse (PLP)

[Grosche/Müller, IEEE-TASLP 2011]Time (seconds)



 Periodicity enhancement of novelty curve
 Accumulation introduces error robustness 
 Locality of kernels handles tempo variations

 Indicates note onset candidates
 Extraction errors in particular for soft onsets
 Simple peak-picking problematic

Beat Tracking

Predominant Local Pulse (PLP)

Novelty Curve

[Grosche/Müller, IEEE-TASLP 2011]



Beat Tracking

 Local tempo at time       :                                     [60:240] BPM

 Phase       

 Sinusoidal kernel 

 Periodicity curve

[Grosche/Müller, IEEE-TASLP 2011]



Beat Tracking
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Borodin – String Quartet No. 2

[Grosche/Müller, IEEE-TASLP 2011]



Beat Tracking
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Borodin – String Quartet No. 2

[Grosche/Müller, IEEE-TASLP 2011]

Strategy: Exploit additional knowledge
(e.g. rough tempo range)

Time (seconds)



Beat Tracking

Brahms Hungarian Dance No. 5
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Beat Tracking

Brahms Hungarian Dance No. 5
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Applications

 Feature design 
(beat-synchronous features, adaptive windowing)

 Digital DJ / audio editing 
(mixing and blending of audio material)

 Music classification

 Music recommendation 

 Performance analysis 
(extraction of tempo curves)



Application: Feature Design

Fixed window size

[Ellis et al., ICASSP 2008] [Bello/Pickens, ISMIR 2005]



[Bello/Pickens, ISMIR 2005]

Application: Feature Design

Fixed window size Adaptive window size

[Ellis et al., ICASSP 2008]



Application: Feature Design

Fixed window size (100 ms)

Time 
(seconds)



Application: Feature Design

Adative window size (roughly 1200 ms)
Note onset positions define boundaries

Time 
(seconds)



Application: Feature Design

Time 
(seconds)

Denoising  by excluding boundary neighborhoods

Adative window size (roughly 1200 ms)
Note onset positions define boundaries



Application: Audio Editing (Digital DJ) 

http://www.mixxx.org/



Application: Beat-Synchronous Light Effects 



Summary

1. Onset Detection
 Novelty curve (something is changing)
 Indicates note onset candidates
 Hard task for non-percussive instruments (strings)

2. Tempo Estimation
 Fourier tempogram
 Autocorrelation tempogram
 Musical knowledge (tempo range, continuity)

3. Beat tracking
 Find most likely beat positions
 Exploiting phase information from Fourier tempogram


