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Homework
Exercise 2.1

Exercise 2.1. Let (f|g) := [,cg f(¢) - g(¢)dt be the similarity measure for two func-
tions f: R — R and g: R — R as defined in (2.3). Consider the following six
functions f, : R — R for n € [1 : 6], which are defined to be zero outside the shown

interval:
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Determine the similarity values (f,|f») for all pairs (n,m) € [1:6] x [1 : 6].
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Homework
Solution 2.1
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Homework
Exercise 2.2

Exercise 2.2. Sketch the magnitude Fourier transform of the following signals as-

suming that the signals are zero outside the shown intervals (see Figure 2.6 for sim-
ilar examples):
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Homework
Solution 2.2a
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Homework
Solution 2.2b
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Homework
Solution 2.2¢c
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Homework
Exercise 2.5

Exercise 2.5. Sketch the magnitude Fourier transform (as in Figure 2.9) for each of

the three signals shown in Exercise 2.2. Assume a window length that corresponds
to a physical duration of about one second.
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Homework
Solution 2.5a
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Homework
Solution 2.5b
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Homework
Solution 2.5¢
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Homework
Exercise 2.12

Exercise 2.12. In this exercise we discuss various computation rules for complex
numbers and their conjugates. The complex multiplication is defined by ¢y - ¢z =
aja, —b1by +i(a1by +asby) for two complex numbers ¢; = a; +iby,co = ay +ib; €
C (see (2.34)). Furthermore, complex conjugation is defined by ¢ = a — ib for a
complex number ¢ = a+ib € C (see (2.35)). Finally, the absolute value of a complex
number c is defined by |c| = v/a? + b2. Prove the following identities:

(@) Re(c)=(c+72)/2
(b) Im(c) = (c—¢)/(2i)
© ata=c+c;

d) cirea=c1-c2

() cc=a’+b*=|c

®) 1/c=¢/(ct) =¢/(a® +b%) =7/(|c[*)
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Homework
Solution 2.12

(a) Follows from c+¢=a+ib+a—ib=2a=2Re(c).

(b) Follows from ¢ —¢ = a+ib—a+ib = 2ib = 2iIm(c).

(© cit+car=(a1+a)—i(b1+b2) = (a1 —ib1)+ (a2 —ib) =TT+ ¢
(d) ci-cz =aiar—biba—i(aiby +axh1) = (a1 —iby)(ay —iby) =¢1- &2
(e) cc = (a+ib)(a—ib) = a*+b* +i(—ab+ba) = a* +b* = |c|?

(f) Follows from 1 =c¢/(cc) =c-(¢/(cc)) and (e).
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Homework
Exercise 2.14

Exercise 2.14. In Section 2.3.1, we defined the set {1,sing,cos; | k € N} C
L%([0,1)). Prove that this set is an orthonormal set in L%([0,1)), i.e., that it sat-
isfies (2.50) and (2.51).

[Hint: Use the following trigonometric identities:

(@) cos(a)?+sin(a)? =1

(b) cos(a)cos(B) = (cos(a+ ) +cos(a—p))/2

(c) sin(a)sin(B) = (cos(ax — B) —cos(a+ B))/2

(d) sin(a)cos(B) = (sin(a+ B)+sin(ax—B))/2

To show (2.51), use (a) and the fact that cos% and sin,% have the same area over a full

period. The proof of (2.50) is a bit cuambersome, but not difficult when using (b),
(c), and (d).]

(xilxj) =0 for i,jel,i# ], (2.50)
|x|>=1 for iel, (2.51)
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Homework
Solution 2.14

Solution to Exercise 2.14. First, we prove (2.51). Obviously, one has ||1]> = 1.
Furthermore, from identity (a), one obtains

2 = 2(cos(27kt)? + sin(27kt)?) = cosi(t)* + sing(¢)* (*)

for all ¢ € [0,1). Therefore,
2 4 2 . . *%
2 =/ o) COSk(l‘) +Slnk(t) dt = (coskICOSk) + (Slnk|81nk). ( )
t€(0,

Both functions cos} and sin} are 1-periodic and shifted versions from each other.
Therefore, integration of both functions over a full period yields the same value. As
a result, one obtains (cosi|cosk) = (sing|sing) = 1.

(*) cosy(t) := v/2cos(2mkt), (2.55) (**)
sin (t) == v/2sin(27ke), (2.56)

(Flg)= [, FOg@
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Homework
Solution 2.14

Next, we prove (2.50).

(1]cosy) = /, oy VESOS(2mk)t = [Vasin(2mke) /(27rk)]:) —0
(1]sing) = [ con V/2sin(2mke)dt = [—\/icos(ant) /(an)](l) ~0

Using (b), one obtains for k # £:

(cosg|cosy) = / [01)\/icos(ant)\/icos(hr&)dt
te|0,

“Sei’)z cos(2m(k+£)t) +cos(2m(k — £)t) dt
t€0,1) 2
_ [sin@a(k+00)  sin@ak-00]" _
B [ 21(k+2) 2n(k—£) ]o_
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Homework
Solution 2.14

Similarly, using (c), one shows (sin|sin;) = O for k # £. For k £, one obtains

(cosy|sing) = / o V20082V 2sin2rtr)ds
t€(0,

use (9)__ / sin(27(k +£)) + sin(2x(k—£)t)
te(0,1)

2
B [cos(27t(k+€)t) cos(27t(k—e)t)] 1 -0
| 2n(k+2) (k-0 Jo

Finally, for k = 4, one obtains

(cosy|sing) = / o V2 cos(2mkt)V/2 sin(27ke)dt
telo,

_ sin(27(2k)t) , [ —cos(2m(2k)t) : _
- 2.[e[0,1) 2 = [ 2m(k+£) ]o -0

This concludes the proof.

Music Processing Analysis - Exercise



