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ABSTRACT

Vocoders, which reconstruct time-domain waveforms from
spectral representations such as mel-spectrograms, are es-
sential in modern music and speech synthesis. Tradi-
tional signal-processing techniques like the Griffin-Lim al-
gorithm have largely been replaced by neural vocoders,
which leverage generative models to achieve superior au-
dio quality. However, these models can introduce arti-
facts and biases, potentially affecting their output in un-
foreseen ways. In this study, we examine how different
musical tunings affect neural mel-to-audio vocoders within
the context of Western music, where performances do not
necessarily adhere to the modern 440 Hz standard tuning.
As a key contribution, we evaluate several recent neural
vocoders on datasets containing piano, violin, and singing
voice recordings. Our results reveal that different vocoders
exhibit distinct biases, causing deviation in tuning, and af-
fecting waveform reconstruction quality in case of non-
standard tuning. Our work underscores the need for im-
proved vocoder robustness in music synthesis and provides
insights for refining future models.

1. INTRODUCTION

Recent advances in speech and music synthesis often fol-
low a two-stage approach: An initial acoustic model gen-
erates an intermediate spectral representation, from which
a second model, frequently referred to as a vocoder,
reconstructs a time-domain waveform [1–4]. A com-
mon choice for this intermediate representation is a mel-
spectrogram. While traditional signal-processing meth-
ods can reconstruct waveforms from mel-spectrograms,
their quality depends on the spectral dimensionality. Re-
cent deep learning-based generative models, such as Gen-
erative Adversarial Networks (GANs) [5] or Diffusion
models [6], achieve high-fidelity reconstruction even from
low-dimensional representations. Although historically
used only in speech transmission, the term “Vocoder” has
recently been adopted for general spectrogram-to-audio
models [7, 8].
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Figure 1: Scatter plot of estimated tuning from vocoded
recordings (vertical axis, vocoder from [1]) compared to
original audio tuning (horizontal axis). Marginal distribu-
tions are shown as histogram plots with a Gaussian ker-
nel density estimation (red and blue line). For an ideal
vocoder, the blue and red distribution would align.

This two-stage approach factorizes the problem of audio
synthesis, enabling different modeling techniques for each
stage. Vocoders can be trained in a self-supervised manner
on large amounts of data, enabling researchers in music
or speech synthesis to rely on pre-trained vocoders. How-
ever, vocoders may introduce artifacts or biases, particu-
larly in case of domain-shift, such as unseen musical in-
struments. While recent works in music synthesis have
moved towards more musically informed spectrogram gen-
eration models—such as enabling fine-grained control over
timbre and pitch [2,3]—the impact of vocoders on the mu-
sical characteristics of the output remains underexplored.
In particular, one musically important but often overlooked
aspect is the influence that different musical tunings have
on signal reconstruction.
Tuning plays a fundamental role in music and varies across
styles and traditions. In Western music, tuning typically
refers to the frequency of a reference pitch, from which
the frequencies of all other pitches can be derived. While
A4 = 440 Hz is the modern standard tuning [9], real-world
recordings often exhibit deviations due to historical rea-
sons, or artistic choices [10].



This paper aims to explore how musical tuning affects
vocoder performance. A key contribution is our analysis of
tuning preservation during waveform reconstruction from
mel-spectrograms of real recordings, revealing systematic
biases in certain vocoders. Our evaluation compares multi-
ple neural vocoders and a signal-processing baseline across
three diverse datasets: piano, violin, and singing with pi-
ano accompaniment. Figure 1 highlights one of our find-
ings, showing how a specific vocoder introduces tuning
bias, leading to a mismatch between the tuning distribu-
tions of the original and reconstructed recordings. As a
further contribution, we conduct a listening test to assess
how non-standard tuning affects the perceived quality of
vocoded audio.

2. BACKGROUND

2.1 Mel-Spectrogram Inversion

Mel-spectrogram computation involves two main stages,
both of which can lead to information loss. First, the mag-
nitude short-time Fourier transform (STFT) is computed,
discarding phase information. Second, a mel filter bank
is applied to the magnitude-STFT, typically reducing fre-
quency resolution.
A signal processing-based approach to mel-spectrogram
inversion is to first estimate the magnitude-STFT, often
via a pseudo-inverse, using Non-Negative Least Squares
(NNLS) [11], and then reconstruct the waveform by es-
timating the phase, typically using the Griffin-Lim algo-
rithm [12]. The quality of the reconstructed waveform de-
pends heavily on the spectral resolution of both the STFT
and mel-spectrogram.
In contrast, neural vocoders are able to synthesize high-
quality audio from mel-spectrograms with a lower spec-
tral dimensionality, making them more practical for audio
synthesis. Early neural vocoders focused on speech and
often failed to generalize to unseen domains such as new
speakers or musical instruments. More recently, “univer-
sal” neural vocoders have emerged that can robustly han-
dle diverse audio sources, including complex musical sig-
nals [5, 13].
For example, Hawthorne et al. [1] train a GAN-based
vocoder on 16,000 hours of music data, building upon
SoundStream [14] and SEANet [15]. This vocoder is
widely used in music synthesis [1–3, 16, 17]. Similarly,
BigVGAN [5], originally trained on speech data, has been
extended by BigVGAN-V2 1 with a broader training set
including music and environmental sounds, enabling more
robust performance across domains. Despite their impres-
sive audio quality, neural vocoders are sensitive to their
training data. As a result, they may struggle with out-of-
distribution inputs, such as unfamiliar instruments or non-
standard musical tunings.
Previous studies have found that many mel spectrogram
inversion models produce waveforms with locally unstable
pitch when applied to music [18, 19]. However, our study
takes a broader perspective by examining tuning as a global

1 https://github.com/NVIDIA/BigVGAN
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Figure 2: Distribution of tuning (5-Cent resolution) per
recording for the three investigated datasets.

statistic over entire recordings, distinguishing it from local
pitch fluctuations, as discussed in the next section.

2.2 Tuning and Tuning Estimation

In the context of the 12-tone equal temperament system
in Western music, tuning can be characterized by the fre-
quency of a given reference pitch, often called concert
pitch. The modern tuning standard was established in 1975
in ISO16 defining the reference pitch to be 440 Hz for the
note A4 [9]. However, this has been subject to change
over time, and even today, it is by no means a univer-
sally applied standard. To illustrate this, Figure 2 shows
the distribution of tuning values per recording for the three
datasets used in this paper, which we introduce in Sec-
tion 3. All three tuning distributions peak around 440 Hz,
with a slight tendency toward higher values. However, we
can also see considerable variations for some recordings,
going as low as 430 Hz. Studies have found that only 50%
of Western classical music recordings fall into the tuning
range 440–443 Hz [20], underscoring the natural diversity
in musical tuning. Qin and Lerch [21] found that tuning
can be a confounding variable for music classification al-
gorithms, highlighting the potential impact of tuning on
deep-learning-based models.
Tuning can also be expressed as deviation in Cents from
A4 = 440 Hz, where one semitone equals 100 Cents, as
shown by the two x-axes in Figure 2. In this context,
tuning estimation is the task of finding the concert pitch
frequency, or equivalently, the deviation of the standard
440 Hz pitch. Due to the importance of tuning in music,
many different approaches have been developed for tun-
ing estimation of full performances [20, 22–24]. Most ap-
proaches define tuning as a circular offset from a reference
pitch (typically A4 = 440 Hz) within ±50 Cents since a de-
viation of more than ±50 Cents is indistinguishable from
a transposition to the next semitone. For example, an A
that is 60 Cents flat (lower) is indistinguishable from a G#
that is 40 Cents sharp (higher). For recordings deviating
by more than ±50 Cents, the estimated tuning therefore
“wraps around” to the opposite side. To ensure a robust and
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unbiased evaluation, we employ two independent tuning
estimation methods. This redundancy allows us to cross-
validate results and account for potential inaccuracies or
method-specific biases in tuning estimation. Both methods
operate with a 1-Cent resolution.
The first tuning estimation method, implemented in the Li-
bROSA package [25], follows a two-stage process. First,
an STFT is computed, and frequency peaks are identi-
fied and refined using parabolic interpolation as described
in [26]. In the second stage, a frequency histogram corre-
sponding to tuning values is constructed by mapping the
interpolated frequencies to the range ±50 Cents using a
modulo operation. The tuning value with the highest count
in the histogram is then selected. We denote this approach
FreqHist. The second tuning estimation method is im-
plemented in the LibFMP package [27] and differs mostly
in the first stage. Rather than frequency interpolation, an
STFT with a large window size is used to obtain the nec-
essary frequency resolution. The STFT is averaged over
time and the resulting frequency is converted to a Cent-
scale with 1-Cent resolution using cubic interpolation. The
resulting distribution is compared with a set of comb-like
template vectors, each representing a specific tuning within
±50 Cents. The final estimate is given by the template that
maximizes the correlation with the distribution. We denote
this technique TempMatch.

3. EXPERIMENTAL SETUP

3.1 Datasets

We use three datasets with distinct instrumentation, in-
cluding piano, singing, and violin. The Beethoven Piano
Sonata Dataset (BPSD) [28] consists of 11 versions of
all first movements of Beethoven’s Piano Sonatas, totaling
352 recordings, and approximately 40 hours. We choose
a piano dataset because the discrete pitch set and stable
tuning throughout a piece enable a robust tuning estimate.
The BPSD in particular is well-suited for our evaluation for
two reasons: First, it contains diverse recordings spanning
nearly 90 years (1935—2022) from different performers,
acoustic conditions, and pianos. Second, as shown in Fig-
ure 2, the dataset exhibits a wide range of tunings. The
Schubert Winterreise Dataset (SWD) [29] contains nine
complete recordings of the “Winterreise” song cycle for
singing voice and piano, by nine different performers, to-
taling approximately 10.5 hours. Unlike the piano, singing
voice has a continuous pitch range and the tuning is less
stable, making it a valuable addition to our experiments.
However, the piano in the SWD provides a stabilizing ref-
erence for the voice. The Violin Etudes (VE) dataset [30]
consists of 925 monophonic violin recordings (approxi-
mately 28 hours) from YouTube. Unlike piano, violin tun-
ing estimation can be less reliable due to continuous pitch
variation. To ensure robust evaluation, we filter out record-
ings where the two tuning estimation methods disagree by
more than 5 Cents, resulting in a final selection of 651
recordings.

Pitch
shifting

Tuning
estimation

shift

Recording

 Pitch-shifted recording
with tuning

Mel +
Vocoder 

Tuning
estimation

Figure 3: Experimental setup for a single recording x.

3.2 Pitch-shift Augmentation and Vocoding

Since our datasets do not cover the full range of tuning val-
ues with a sufficient number of recordings—shown in Fig-
ure 2—we use pitch shift augmentation to create a new ver-
sion of our datasets with a uniform distribution in the tun-
ing space similar to [21], using the Rubber Band Library. 2

Figure 3 shows the experimental setup of the applied pitch
shift augmentation. For a given recording x, we estimate
the original tuning τx using the FreqHist estimator. We
sample a target tuning τ ∼ U(−50, 50) and pitch shift x by
the difference δ = τ−τx. This yields a modified recording
y with a tuning of τy = τ (equality holds up to the tun-
ing estimation error). For each recording in our datasets,
we generate four pitch-shifted versions, which are subse-
quently downsampled to 16 kHz. While pitch shifting may
introduce minor artifacts, we argue these affect perceived
quality but not tuning estimation accuracy.
Next, we calculate a mel-spectrogram from y and sub-
sequently reconstruct the time-domain signal using a
vocoder, producing the output ŷ. We refer to this process
as vocoding y. The parameters of the mel-spectrogram are
always chosen to fit the given vocoder, and after vocoding,
each signal is downsampled back to 16 kHz. The tuning of
ŷ is then estimated, yielding τ̂ . By comparing τ̂ with τ , we
assess the vocoder’s ability to preserve tuning.

3.3 Quantitative Metrics Tuning Preservation

We introduce two metrics to evaluate tuning preservation.
A straightforward approach would be to compute the dif-
ference τ̂ − τ . However, since our tuning estimation al-
gorithms are circular, large errors can arise from semitone
confusion. For example, if a vocoder is applied to a sig-
nal with a tuning of τ = 45 Cents and it raises the tuning
by 10 Cents, the estimation would return τ̂ = −45 Cents
(equivalent to +55 Cents). A simple difference would then
yield τ̂ − τ = −90 Cents, even though the vocoder only
changed the tuning by 10 Cents in this case.
To address this, we introduce a circular difference, con-
sidering tuning estimates on a circle where τ = 50 and
τ = −50 are equivalent. Formally, we define the circular
difference between two estimates τ1 and τ2 as:

δcirc =


δ + 100, if δ < −50

δ − 100, if δ > 50

δ otherwise

(1)

2 https://github.com/breakfastquay/rubberband
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Vocoder Short Name Training Data # Param. Fs # Mel Bands STFT Win. Len. Hop Length

Hawthorne et al. [1] HAWT Music 15M 16 kHz 128 640 320
BigVGAN [5] BV Speech 112M [22, 24] kHz [80, 100] 1024 256
BigVGAN-V2 [31] BV2 Music, Speech, ES 112M [22, 24, 44] kHz [80, 100, 128] 1024 256
NNLS & GL [12, 25] LSGL — — 16 kHz [100, 128, 150] 640 320

Table 1: Overview over investigated vocoders. For vocoders with multiple versions, we show lists with parameters for each
version (in order). For example, BigVGAN-V2 with 128 mel bands has a sampling frequency of 44 kHz. “ES” stands for
environmental sounds, “NNLS&GL” for Non-Negative Least Squares & Griffin-Lim.

where δ = τ2 − τ1. This guarantees δcirc ∈ [−50, 50].
While the circular difference captures the deviation be-
tween τ and τ̂ , it does not provide insight into the statis-
tical distribution of τ̂ . By comparing the distributions of
τ and τ̂ (shown in blue and red for the example in Fig-
ure 1, respectively), we quantify how strongly the tuning
distribution of the vocoded audio deviates from the input
distribution. To this end, we use the Wasserstein Distance
(also referred to as the earth mover’s distance, or EMD),
which is the optimal transport cost between two probability
distributions [32]. A lower Wasserstein Distance indicates
greater similarity. In particular, given the circular nature
of tuning estimation, we compute the Circular Wasserstein
Distance (CWD), as described in [33]. Thus, in this op-
timal transport problem, probability mass can flow across
the boundaries of the estimation range, as both ends are
connected on the considered circle.

3.4 Vocoders

In Section 2.1, we briefly introduced the main vocoder ar-
chitectures investigated in this work, for which we will
use the following shorthand notations throughout the re-
mainder of the paper: Hawthorne et al. [1] (HAWT),
BigVGAN [5] (BV), BigVGAN-V2 [31] (BV2), and the
signal-processing-based approach of NNLS [11] followed
by Griffin-Lim [12] (LSGL). Note that the vocoder by
Hawthorne et al. is ambiguously also referred to as Sound-
Stream in the literature [2, 3].
Table 1 gives an overview of the investigated vocoders.
HAWT has only a single version, with 128 mel bands. Mul-
tiple versions exist of BV and BV2, which differ in the
number of mel bands and sampling frequency Fs. For
LSGL we use three different numbers of mel bands, with
the same underlying STFT properties. In our results, we
identify each vocoder by its short name and the number
of mel bands. For instance, BV-80 refers to the BigV-
GAN model with 80 mel bands and a 22kHz sampling rate.
This naming convention is unambiguous, as variants of the
same vocoder with different sampling rates also have dis-
tinct numbers of mel bands.

4. RESULTS TUNING PRESERVATION

4.1 Quantitative Results

Figure 4a presents the mean absolute δcirc for all tested
vocoders, where distinct colors represent the datasets, and
the color shade indicates the tuning estimator. In addition
to the tested vocoders, we include metrics for ground truth
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Figure 4: Evaluation metrics for each vocoder, dataset,
and tuning estimation method.

audio GT in the figure, where we compare the tuning esti-
mate τy of the pitch-shifted audio with the target tuning τ .
For GT, we can see that tuning estimation aligns with pitch-
shifting, meaning the estimated tuning of a pitch-shifted
version differs on average not more than 2 Cents from the
target tuning.
As a first and central observation, we see that most neural
vocoders introduce tuning deviation, whereas the signal-
processing-based LSGL generally shows a lower circular
difference. However, BV2-100 and BV2-128 are an ex-
ception to this. We also observe that a higher number
of mel bands for LSGL and BV2 leads to less tuning de-
viation, reaching values only marginally above the tun-
ing estimation inconsistencies for a high number of mel
bands. When comparing neural vocoders, HAWT exhibits
the overall highest circular difference, reaching values up
to δcirc = 18.7 Cents. BV2 shows lower values on aver-
age compared to the original BV. From further observing
Figure 4a, the different datasets seem to have an impact on
the tuning preservation for some vocoders. For instance,
BV and HAWT show notably higher tuning deviations for
SWD compared to other datasets. The VE dataset is least
affected by tuning deviations for all neural vocoders, pos-
sibly due to its continuous pitch nature, since it includes
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Figure 5: Tuning estimates of vocoded audio (τ̂ ) over input audio (τ ) on all three datasets for vocoders HAWT and BV2-80.
Marginal distributions are shown as histograms with a moving average smoothing of width five applied and a Gaussian
kernel density estimate (line). Tunings were estimated with TempMatch estimator.

violin only. However, this dataset seems to be difficult for
LSGL. Comparing the results for the two tuning estimation
methods, we observe similar trends despite some variations
for specific vocoder-dataset combinations.
Figure 4b shows the CWD for all vocoders, datasets, and
tuning estimation methods. We observe a strong corre-
lation with δcirc from Figure 4a. A high CWD indicates
that the tuning of the vocoder output follows a distribution
different from that of the uniformly distributed pitch-shift
augmented datasets, suggesting that, in general, when a
vocoder introduces tuning deviations, these deviations fol-
low a non-uniform distribution.

4.2 Qualitative Results
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(b) LSGL-150

Figure 6: Tuning estimates of vocoded audio (τ̂ ) over in-
put audio (τ ) for BV2-128 and LSGL-150 on the SWD.

To better understand the tuning changes introduced
by the vocoders, we analyze two example vocoders in

more detail: HAWT and BV2-80, as these are among
the most commonly used for music data in the litera-
ture [1–3, 17, 34, 35]. Figure 5 shows a scatter plot of
all vocoded tunings τ̂ over input tunings τ for all three
datasets, alongside marginal distributions with a Gaussian
kernel density estimation (KDE). Note that we account for
the circular continuity of the tuning estimates to calculate
the KDE.
As indicated by our quantitative analysis, the output distri-
bution of τ̂ is heavily altered from the uniform input dis-
tribution in almost all cases. For both vocoders, a cluster
around τ̂ = 0 is evident, corresponding to A4 = 440Hz,
though the actual peak is slightly above τ̂ = 0. This could
reflect a bias in the training data, as many recordings are
tuned between 440 and 443 Hz, as discussed in Section 2.2.
This effect is similar for the BPSD and the SWD, but less
pronounced for the VE. Figure 6 shows the same scatter
plot for BV2-128 and LSGL-150 on SWD, where out-
put tuning closely follows input tuning, consistent with the
low tuning deviation metrics discussed earlier. The bias
observed in Figure 5 appears to vanish for the higher res-
olution BV2 model (which has more mel bands and higher
sampling rate). This is potentially due to the reduced in-
formation loss in the mel spectrograms, making accurate
reconstruction an easier task. Additional figures for all
datasets, vocoders, and tuning estimator combinations are
available on our website. 3

3 https://www.audiolabs-erlangen.de/resources/2025-ISMIR-
VocoderTuningEstimation
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5. LISTENING TEST

While we showed that vocoders may not preserve tuning,
we did not examine whether this affects perceived quality
for non-standard tuning. In principle, tuning deviation and
output quality could be orthogonal; a vocoder might alter
tuning yet still produce high-quality audio.
To investigate this question, we conducted a listening test,
focusing on the BPSD due to its diverse original tuning.
Instead of comparing samples from different vocoders, we
compare only vocoded samples of the same excerpt under
different tunings from a single vocoder. This goal intro-
duces two challenges for the listening test design. First, we
require test items with identical original quality but differ-
ent tunings. A potential solution is pitch shifting, which
can robustly replicate a specific tuning (Section 4.1, Fig-
ure 4a), but here, the introduction of small artifacts might
impact the perceived quality. Second, the commonly used
MUSHRA test [36] is unsuitable for comparing items that
differ in tuning from the reference, as pitch differences
would directly influence the listeners’ judgment. We ad-
dress both issues in our test design.
The test follows an AB format without a reference: Partic-
ipants compare two excerpts and choose the one with the
better-perceived quality, having a “no preference” option
as well. As a first step, we select four BPSD recordings
with diverse original tunings of −42, −11, 0, and 34 Cents
and pitch-shift each one three times to replicate the other
three tunings, yielding 16 test items (four per tuning).
In order to analyze tuning bias within each vocoder, we
do not compare across vocoders but rather select one set
of item pairs that is then vocoded and presented indepen-
dently for each vocoder. Each original (non-pitch-shifted)
recording is paired with its three pitch-shifted versions, en-
suring each tuning is tested against the original. For exam-
ple, the item with an original tuning of −42 Cents is paired
with its pitch-shifted versions with tunings -11, 0, and 34
Cents. In this example, if a listener prefers the 0-Cent tun-
ing over the original −42-Cent tuning, even though the 0-
Cent was obtained through pitch-shifting, this can indicate
that tuning affects quality stronger than pitch shifting. In
total, this yields 12 item pairs per vocoder, and we test four
vocoders: HAWT, BV2-80, BV2-128, and LSGL-150.
We split the items into two separate listening tests with 24
pairs each, to limit the test duration per listener. Addi-
tionally, we include four control pairs for both subgroups
with identical items, where attentive listeners should indi-
cate “no preference”. We exclude listeners who indicate
more than once a preference for control item pairs.

5.1 Results

In total, 25 participants took part in our listening test, 19
male and 6 female, with a median age of 27, ranging from
21 to 58. Among them, 20 participants had some prior
experience with listening tests. A total of 5 listeners did
not meet the post-screening criterion, leaving 20 listeners
distributed evenly among the two item subsets. For each
tuning value, we aggregate the number of times it was pre-
ferred. If tuning had no impact on quality, we would expect
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Figure 7: Listening test results: listeners’ preference to-
wards tuning values as a percentage of total votes for
each vocoder individually. “No preference” votes are split
evenly between both excerpts in a pair, e.g., a vote between
0 and 11 counts as half a vote in the red bar for each, mean-
ing that bars sum up to 100% for each vocoder.

either a tendency towards “no preference” votes, or an ap-
proximately equal distribution of preferences across tuning
values.
Figure 7 illustrates this percentage of preference votes for
each tuning value and tested vocoder. For HAWT and
BV2-80 we can see a trend: The tunings −42 and +34
Cents receive fewer preference votes compared to the mid-
dle values. In contrast, BV2-128 does not exhibit a strong
trend, while LSGL-150 shows a generally lower num-
ber of preference votes, suggesting that listeners perceived
fewer quality differences compared to the neural vocoders.
When aggregating preferences into groups of “original”
and “pitch-shifted”, listeners show a slight preference to-
wards the original items for the neural vocoders, indicating
that pitch-shifting also has a negative influence on qual-
ity (see supplementary website). Therefore, fully disen-
tangling the effects of pitch shifting and tuning in the lis-
tening test remains challenging. However, due to our test
design, always comparing the vocoded original recordings
with their vocoded pitch-shifted counterpart, Figure 7 still
shows a meaningful trend.
Overall, the results indicate that vocoders which show a
bias in tuning preservation (HAWT and BV2-80) also show
a decrease in quality when reconstructing signals with out-
of-distribution tuning.

6. CONCLUSIONS

In this study, we investigated how musical tuning affects
neural vocoders, focusing mainly on tuning preservation.
Our findings reveal that vocoders can significantly alter
both individual tunings and overall tuning distributions,
with some exhibiting a bias towards modern standard tun-
ing. Additionally, our listening test suggests a decline in
reconstruction quality for signals with non-standard tun-
ings when processed by a vocoder with tuning bias.
Our work underscores the importance of tuning in music
generation and vocoder design. Future work should focus
on mitigating tuning biases during vocoder training. Our
evaluation approach, based on pitch shifting and quantita-
tive evaluation metrics, gives researchers a straightforward
yet effective method for assessing tuning robustness in mu-
sic vocoders.
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