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ABSTRACT

We explore the concept of combining physical model-
ing of the piano with deep learning using methods from
differentiable digital signal processing. The core of our
proposed approach is a modal synthesis model for the pi-
ano string, which is combined with a linear filter to approx-
imate the acoustic properties of a grand piano. In a prelim-
inary experiment, we train a neural network to estimate an
excitation signal for a string in an autoencoder setting and
show that the system can match the spectral content of a
given target note. Our differentiable piano model could be
utilized in a multitude of music processing tasks, including
sound matching, signal enhancement, or source separation.

1. INTRODUCTION

Differentiable Digital Signal Processing (DDSP) [1] pro-
vides a flexible toolkit to include domain knowledge into
the design of machine learning models for audio synthe-
sis. While general-purpose methods like spectral modeling
synthesis (SMS) [2] make it possible to reproduce a wide
range of sounds, they can also generate unrealistic outputs
and artifacts when being used for specialized tasks like pi-
ano synthesis. Previous work has focused on controlling
the parameters of SMS to avoid such issues [3], enabling to
match the sound characteristics of piano recordings given
aligned MIDI annotations [4]. More physically inspired
synthesis models allow for a better control of the possi-
ble outputs and thereby can introduce stronger inductive
bias to the system. This has recently proven useful, e.g.,
for unsupervised source separation of multiple voices in a
cappella ensemble music [5], or for singing voice recon-
struction from mel-spectrograms [6].

In this work, we propose to replace the sinusoidals-
plus-noise synthesis of SMS with a differentiable and spe-
cialized model for piano synthesis, which is inspired by
physical modeling [7]. In particular, we use modal synthe-
sis to model the vibrating strings of a grand piano with a
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Figure 1. Overview of the differentiable piano model.

bank of second-order IIR filters and emulate the sound ra-
diation characteristics of the instrument with a subsequent
FIR filter. In an initial experiment, we use pre-defined pa-
rameters for these filters and train a neural network to gen-
erate the excitation signal corresponding to the force that
the hammer exerts on the strings when a key is pressed,
showing that we can match the spectral content of a known
reference excitation signal with this method. Audio exam-
ples can be found on a supplemental website ! .

'https://audiolabs-erlangen.de/resources/MIR/
2023-piano-synth-1bd
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Figure 2. Results of the excitation learning experiment for an A4 (440 Hz) visualized as spectrograms. (a) Recording of a
real piano tone. (b) Model output using the reference excitation signal. (¢) Model output using the learned excitation signal
using the signal from (b) as input. (d) Model output using a different reference excitation signal.

2. DIFFERENTIABLE PIANO MODEL

For the design of the piano model, we aim for a balance
between perceptual accuracy and computational simplic-
ity. The system consists of an excitation signal model &£
and a piano model P, which itself contains M key models
and a soundboard filter, as shown in Fig. la.

The task of £ is to emulate the function of the hammer
that excites the corresponding strings when a certain key of
the piano is pressed. Since an accurate physical description
of the hammer—string interaction is a difficult task [8], we
rely on a perceptual modeling approach (see Section 3).
The output signal of £ is routed to the respective key model
depending on the played note.

The model for a single key (shown in Fig. 1b) com-
prises two separate banks of parallel second-order IR fil-
ters, the main and secondary string [7], which are excited
by the output signal of £. Each individual filter repre-
sents a transversal mode of vibration of a physical piano
string, with one second-order filter for each mode below
the Nyquist frequency. While the individual filter coef-
ficients may also be learned, we calculate the filter coef-
ficients for our experiment from the known or estimated
physical properties of the strings and keep them fixed.
With slightly different parameters for the secondary string,
the key model can efficiently replicate many of the percep-
tually relevant effects of using multiple strings for a sin-
gle key, including beating and the characteristic two-stage
decay [9]. Furthermore, the M keys are interconnected
to emulate the effect of sympathetic resonance [10], i.e.,
string vibrations induced by striking neighboring keys.

The output signals from each key are summed and fed
to the soundboard filter. This FIR filter models the (ap-
proximately linear) radiation characteristics of the piano,
which can further be combined with the transfer function
between instrument and a microphone, possibly including
room acoustics, similar to the reverb in [1]. While the fil-
ter characteristics may also be learned from recordings, we
fix the FIR coefficients to a measured soundboard impulse
response (IR) of a Yamaha C3 grand piano. Measurement
details and IRs are available on the supplemental website.

The proposed model has several limitations. First, it
does not account for the effect of the pedals. In particular
the sustain pedal influences the characteristics of the whole
piano, which should be considered in a full model. Second,
the current system does not account for key release damp-

ing of the strings [11], as well as the noises of hammer and
damping mechanisms [12]. Third, the soundboard charac-
teristics change over the range of the keyboard [13], which
is not accounted for by a single time-invariant filter. We
plan to address these issues in future work.

3. EXCITATION LEARNING EXPERIMENT

The combination of £ and P can be interpreted as a DDSP
autoencoder, where € is a neural network trained to esti-
mate the latent excitation signal f from an input signal z,
and P is a fixed decoder that generates an output signal
y. The training objective for £ is to make y as similar as
possible to x, measured by a multi-scale spectral loss [1].
We choose the ResNetl8 [14] architecture with 12M pa-
rameters using a magnitude spectrogram of x as input. To
ensure efficient back-propagation of gradients, we use fre-
quency sampling of the IIR filters [15] during training. In
our experiment, f has the same duration and sampling rate
as x and y (one second at 16 kHz) and we train on a dataset
of 44000 synthetic piano tones (plus 11000 test samples).
We generate this synthetic dataset using P with the same
time-invariant filter parameters as during training and syn-
thetically generated reference excitation signals which are
varying in attack time and pulse shape [16]. This method
allows for an analysis whether the learned f resembles the
reference excitation signal in terms of timing and spectral
content.

A comparison of Fig. 2b and c shows that the system in
our preliminary experiment can indeed match the reference
excitation signal in terms of approximate onset timing and
the intensity of individual partials. However, we observe
some temporal “blurring” of f compared to the reference,
creating an unnatural attack phase in y.

4. FUTURE WORK

In addition to addressing the current model limitations, a
next step is to train the system on real piano recordings, in-
creasing the complexity of the learning task. Since & is not
limited to the physical interpretability of a hammer force
signal and P is linear, it can theoretically also compen-
sate for some signal characteristics that are not accurately
modeled by P. Furthermore, we plan to explore various
applications for this model, including the enhancement of
corrupted piano recordings and unsupervised transcription.
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