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1996: £ Weserberglandorchester Bédexen (WBO)
Since 2008: Sinfonischen Blasorchester Hoxter (SBO)
Since 2019: Organizing Committee SBO

2020-23: Board member Stadtmusikverband Hoxter
Since 2021: Co-Conductor WBO (with Nicole Krois)
Since 2025: Board member SBO HX e.V.

Since 2026: Board member ISMIR (member-at-large)

INFONISCHES

Blasorchester Hoxter
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International Audio Laboratories Erlangen
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Z Fraunhofer EAU Erangem Normbarg o
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= Fraunhofer Institute for = Friedrich-Alexander-Universitat
Integrated Circuits IIS Erlangen-Nurnberg (FAU)

= Largest Fraunhofer institute A U D I O = One of Germany’s largest
with > 1000 members universities with = 40,000

= Applied research for sensor, L A B S students

audio, and media technology = Strong Technical Faculty

© AudioLabs, 2026 Music Synthesis for Wind Music g Devische AUDIO
Stofan Bale 4 A | ABS




International Audio Laboratories Erlangen
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International Audio Laboratories Erlangen

Prof. Meinard Muller

AUDIO
*"’@ O " Music Processing )
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Meinard Muller: Research Group

= Ching-Yu Chiu (Sunny) = Hendrik Schreiber

= Ben Maman = Sebastian Strahl = Peter Meier = Christian Dittmar

= Simon Schwar = Uli Berendes = Yigitcan Ozer = Stefan Balke

= Johannes Zeitler = Vlora Arifi-Muller = Michael Krause = Jakob AbeRer

= Abhirup Saha = Stefan Balke = Christof Weil3 = Jonathan Driedger
= Manuel Peters = Sebastian Rosenzweig = Thomas Pratzlich

= Frank Zalkow =

oy 7
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Music Processing for Wind Music
Outline

Thanks to my colleagues:

Part 1: Datasets
= Introduction & Overview

- ChoraleBriCkS dataset Mein;\rd Muller Sion Schwar
= ChoraleWind dataset

Part 2: Synthesis
= Introduction & Overview

)

= Pulsetable SyntheSiS Christian Dittmar Manuel Peters

= Differentiable Pulsetable Synthesis o
And all the great contributions from

the ISMIR and signal processing

community.
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Part 1

DATASETS

) . i X . Funded by A U D I O
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Datasets
Overview in the MIR Community

* Hundreds of datasets available in den MIR community

= Qverview of existing datasets: hitps://github.com/ismir/mir-datasets
(>200 entries...constantly growing)

= Datasets usually contain audio data (mono, stereo, multitrack) + annotations

= Annotations:

Beats, structure, melody, fundamental frequency, harmony, metadata (artist, title,
genre), ...

= Not all audio data can be shared publicly = copyright restrictions

© AudioLabs, 2026 Music Synthesis for Wind Music
Stefan Balke 10



https://github.com/ismir/mir-datasets
https://github.com/ismir/mir-datasets
https://github.com/ismir/mir-datasets

Datasets
Your opinion

|
-s
g N

Why are public datasets
important (not only) in
music research?

dddddddd
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Datasets
Why are datasets important in music research?

= Basis for experiments: validate or falsify research questions/theories
= Serve as training data: No data > no machine learning models

= Facilitate exchange between researchers

= Evaluation on public datasets can help to make works comparable

= Preservation of cultural heritage

© AudioLabs, 2026 Music Synthesis for Wind Music
Stefan Balke 12




Datasets
Spotlight: RWC

* Released in 2002 by Masataka Goto
= First dataset with cleared licenses

= Most of the 315 pieces new
compositions mimicing different styles

= Annotations: Beats, structure, lyrics,
melody, sheet music (MIDI)

(/

N
Stefan Balke, Johannes Zeitler, Vlora Arifi-Muller, Brian McFee, Tomoyasu Nakano,
Masataka Goto, and Meinard Muller:

RWC Revisited: Toward a Community-Driven Music Information Retrieval Corpus
Accepted for TISMIR, 2026.
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Datasets
Spotlight: Schubert Winterreise

L

» Recordings of Franz Schubert’'s song o oo

03. Gefrorne Trénen
. - - 11 04. Erstarrung
cycle ,Die Winterreise” (1827
7 06. Wasserflut
07. Auf dem Flusse
08. Riickblick

T 1
.
T 1
T 1 |
T 1
.
= 24 songs, 9 performances | oh =
g b p o :? g:’islflingstraum ===
©  12. Einsamkeit [ [ T ]
(3 13. Die Post ===
u el etiid
2 a re O pe n a CceSS l 16: Letzte Hoffnung ===
: ; gz:;ische Morgen = = =
= Annotations: Sheet music, chords, o mE——— =
21. Das Wirtshaus _— Global Keys °
Stru Ctu re I ri CS gg Zztfll\lebensonnen ——1— L ChoLr?iza' Keyso\&-\o(‘
) y 24. Der Leiermann "z*‘\ zge\ e “‘\o\\ 6\0\ 6\0\ 6\0\ é\o\ é\o\ 6\0\ 6\0\ 6\0\ 6\0\ Ra‘:’ﬂe:as:ares / &
d‘\c‘:’:‘z @i e ‘(’\‘;’5\ Qq,\"}?g, \:;‘_,6\:\66\:{@\"‘@ \‘:) Q,\:gg Nad
%
,Poet” ,,Composef‘ ,,Pen‘ormer"
<| D>> <| D>> <| D>> — Version —>
2 : : Christof Weil}, Frank Zalkow, Vlora Arifi-Muller, Meinard Muller, Hendrik Vincent
Husch Fischer-Dieskau  Quasthoff Koops, Anja Volk, and Harald Grohganz
1933 1955 1998 Schubert Winterreise Dataset: A Multimodal Scenario for Music Analysis

-2 semitones ACM Journal on Computing and Cultural Heritage (JOCCH), 15(2): 1-18, 2021.

Funded by
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Datasets
A Task Perspective

Our goal: Automatic Music Transcription for Orchestral Music
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Datasets
A Task Perspective

Our goal: Automatic Music Transcription for Orchestral Music 4

MIR

Task Complexity

uuuuuuuuu
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Datasets
A Task Perspective

Our goal: Automatic Music Transcription for Orchestral Music 4

MIR

Task Complexity

)
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Datasets
A Task Perspective

Our goal: Automatic Music Transcription for Orchestral Music 4

MIR

Task Complexity

\
®)
%
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Datasets
A Task Perspective

Our goal: Automatic Music Transcription for Orchestral Music 4

MIR

Task Complexity

<),
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Datasets
A Task Perspective

Our goal: Automatic Music Transcription for Orchestral Music 4

MIR

Task Complexity

ddddddddd
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Datasets
A Task Perspective

Our goal: Automatic Music Transcription for Orchestral Music 4

MIR
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Concert Band
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Concert Band

dddddddd
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Four-Voice Choir (SATB)
Drese: Jesu geh voran

Bricks

Tenor (T)
Bass (B)
© AudioLabs, 2026 Music Synthesis for Wind Music FDdei:byG Deutsche
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ChoraleBricks
Multitrack Dataset for Wind Music Research

Chorale

Bricks

= Dataset featuring 10 SATB chorales
= 193 isolated tracks with 13 instruments
= Recorded along conducting video for syncronization

© AudioLabs, 2026 Music Synthesis for Wind Music 5;6 beutsche AUDIO
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ChoraleBricks
Multitrack Dataset for Wind Music Research

Chorale -,

Bricks

= Dataset featuring 10 SATB chorales
= 193 isolated tracks with 13 instruments
= Recorded along conducting video for syncronization

”

Drese, A.: Jesu geh voran Chorale
Arr. Mauersberger / Cond. Stefan Balke Bricks

© AudiolLabs, 2026 Music Synthesis for Wind Music FSEdeyG Deutsche . A U D I 0
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ChoraleBricks
Multitrack Dataset for Wind Music Research

Bricks

Dataset featuring 10 SATB chorales

193 isolated tracks with 13 instruments s

Recorded along conducting video for syncronization

Annotations of signal properties
= Notes
= Pitch/ FO
= Onsets

= Beat & measure positions
= |nstrumentation

dddddddd
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ChoraleBricks
Waveform
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ChoraleBricks
Waveform with Temporal Energy Envelope
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ChoraleBricks
Time-Frequency Fourier Representation
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ChoraleBricks
Time-Frequency Fourier Representation with FO Trajectory

Time (seconds)

dddddddd
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ChoraleBricks
Harmonic Peak Amplitudes (Timbre-Related Feature)
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ChoraleBricks
A Modular Multitrack Dataset for Wind Music Research

00:00:32:085

OO0 ® 0 0O0O®O®OOLOL®O OO

1. Clarinet

1. Flugelhorn

1. Flute

1. Oboe

1. Trumpet

2. Clarinet

2. English horn

2. Flugelhorn

2. Trumpet

3. Baritone

3. Baritone Saxophone
4. Baritone

4. Baritone Saxophone
4. Bass Clarinet

4. Trombone

4. Tuba

- 5x§
- 4 xA
} 2xT
- 5xB

5x4x2x5= 200 combinations

Chorale

Bricks
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ChoraleBricks

® 0@ "§ Audiolabs - Drese: Jesu geh x o+

INTERNATIONAL AUDIO LABORATORIES ERLANGEN \
-
Home.
About re: voran
The pl ine
e:

< C [J % audiolabs-erlang.. @ | P A PoeoE OBXO

AUDIO
LABS

Chorale

Bricks

193 isolated tracks with 13 instruments (2:10 h)
4582 possible SATB ensembles (~52 h)

Dataset documentation and multitrack player:
https://audiolabs-erlangen.de/resources/MIR/2025-ChoraleBricks

Accompanying Python toolbox:
https://qgithub.com/stefan-balke/choralebricks

Dataset download:
https://doi.org/10.5281/zenodo.15081740

Stefan Balke, Axel Berndt, and Meinard Muller
ChoraleBricks: A Modular Multitrack Dataset for Wind Music Research
Transaction of the International Society for Music Information Retrieval (TISMIR), 8(1): 39-54, 2025.

© AudiolLabs, 2026
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https://audiolabs-erlangen.de/resources/MIR/2025-ChoraleBricks
https://audiolabs-erlangen.de/resources/MIR/2025-ChoraleBricks
https://audiolabs-erlangen.de/resources/MIR/2025-ChoraleBricks
https://audiolabs-erlangen.de/resources/MIR/2025-ChoraleBricks
https://audiolabs-erlangen.de/resources/MIR/2025-ChoraleBricks
https://github.com/stefan-balke/choralebricks
https://github.com/stefan-balke/choralebricks
https://github.com/stefan-balke/choralebricks
https://doi.org/10.5281/zenodo.15081740

Datasets
ChoraleWind

( \\ /
@ Neues Thiiringer Choralbuch

= ChoraleBricks was a subset from the

Meues Thiinger Lhoralbudy

.Neues Thuringer Choralbuch” Toeoioe
= Contains 312 chorales ML

Epangelifthe Declagaantalt Yeclin

= We used it to render synthetic - — e\
errormance rendering udio syntnesis
performances N A —
VARKUP N oo

\I'I'IIEII d, <ot

/«m»»———»/
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Datasets
Performance Rendering

w A A + i " L L
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o
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Audio
Synthesi
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Datasets

Performance Rendering

w & & + 1 " L 3
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1
Rule-based
_ __1|Performance )
A Yy ot Ne —»i+1| Rendering .
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Datasets
Performance Rendering
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Datasets
Performance Rendering

w A A + i " L L
s @ N—N—1 1 ; “ H D ,’ T ‘.‘,; ¥
1]
Rule-based
. . Performance
A e e e % -
ERE Dol = Rendering

»
Ll

QL

Performed Symbolic
Representation
(MPM, MIDI)

o

Audio

Synthesis
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Datasets
Audio Synthesis

= Commercial Synthesizer:
SWAM Engine from Audio Modeling

= Based on physical modelling

1 L] ﬂl 1%!

= Rendered 16 different instruments

= 85 hours of isolated tracks

I!FWFMH!HlHH\'

© AudioLabs, 2026 Music Synthesis for Wind Music SFVG Deutsche A U D I 0
Stefan Balke 40 Forschun g g FnTAe’ﬂTMr: aft L A B S




Datasets
Performance Rendering

Rule-based .
. . Performance AUdlo.
e e e % Rendering Synthesis
2 C il * Iz Performed Symbolic
> Representation
%’E e — (MPM, MIDI)
NG
.Y k1 k f— i -

e e e e e
Axel Berndt, Aida Amiryan-Stein, Manuel Peters, Meinard Muller, and Stefan Balke
ChoraleWind: An Expressive Wind-Quartet Dataset for End-to-End
Rendering from the Neues Thiringer Choralbuch
Submitted, 2026.
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Robustness of Pitch Estimators
Or: When do pitch estimators break?

= Cross-talk always present in real-world ensemble recordings

= Research question: How robust are current pitch estimators
to different cross-talk settings?

Peter Meier, Meinard Muller, and Stefan Balke:

Analyzing Pitch Estimation Accuracy in Cross-Talk
Scenarios: A Study with Wind Instruments, In Proceedings of
the Sound and Music Computing Conference (SMC), Accepted,
2025.
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Dissonance Analysis

- S S
Or: Why does it sound unpleasant? pEE= === - =
= Automatically measure Sensory (perceived) Dissonance %;f: B Jj_(b)

4

= Reaserch question: \What are the impacts of timbre, tuning, and
intonation?

Simon Schwar, Stefan Balke, and Meinard Muller:
Measuring Sensory Dissonance In Multi-Track Music
Recordings: A Case Study with Wind Quartets, ISMIR, 2025.
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Part 2

MUSIC SYNTHESIS

© AudiolLabs, 2026 Music Synthesis for Wind Music Sei;yc Deutsche . A U D I O
Stefan Balke 44 i —— LABS




Datasets

|
-s
g N

Which synthesizers do
you know?

© AudioLabs, 2026 Music Synthesis for Wind Music
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Datasets

Which synthesizers do
‘J you know?
O‘O Do you know how

m they work??

dddddddd
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Image Sources:
https://commons.wikimedia.org/wiki/File:Hammond B3 Organ at Recording Studios.ipg

| ] | ]
M l l S IC Sy nth eSI S https://commons.wikimedia.org/wiki/File:Minimoog, D eutsches Museum.jpg

Audio Sources:
Procol Harum — A Whiter Shade of Pale
Herbie Hancock — Chameleon

Popular Approaches

Synchron
Duality Strings
(regular)

Vienna
y Symphonic
Library

Additive Synthesis Subtractive Synthesis Sample-based Synthesis
* Represent sound as a sum of sinusoids » Sound starts with a spectrally rich » Sound is generated with recorded
(Fourier principle) source (e.g., sawtooth, square, noise) samples
« Each sinusoid represents a partial » Filter partials to create sounds « Longer notes with looping
* Amplitude of each partial forms timbre * Pitch changes by transposition or
resampling
N N RN
N N O\
( )Jn/,l; ‘U ( D) //;,l ‘U ( )Jn/,l; .U
N NI NI
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https://commons.wikimedia.org/wiki/File:Hammond_B3_Organ_at_Recording_Studios.jpg
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Recent Approaches / — —
Data-Driven
Neural Synthesis: \ e arere Subtractve
Use a neural network to generate audio Diffusion
> high flexibility, hard to control, high oo — Lo
computational requirements S ——

\

Parametric Table Lookup e
Differentiable Digital Signal Processing: \ Pu'setab'e

Use neural networks to control DSP systems s
- constrained to the capabilities of the DSP

Physical
system, interpretable, much lower computational Moddl
requirements
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Music Synthesis
Pulsetable Synthesis

=
]

Amplitude
o

Amplitude
o

-1 A
4 6 8 10 12 14

Time (ms)

- ,Zoomed-In"“ waveforms of an audio recording of a trumpet
- Two different positions in the recording = pulses very similar

M. Oehler and C. Reuter, “Dynamic excitation impulse modification for a synthesis and analysis system for wind instrument sounds,” in MCM, 2009.
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Music Synthesis
Pulsetable Synthesis

Waveform:

dddddddd
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Music Synthesis
Pulsetable Synthesis (440 Hz)

<)

Waveform: Time
<+—>
1
T =—
fo
Frequency %
Spectrum:
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Music Synthesis
Pulsetable Synthesis (220 Hz)

= P

Frequency ’ % ﬂ
Spectrum:

U v Frequency

dddddddd
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Music Synthesis
Pulsetable Synthesis (110 Hz)

V ﬁf *f M M -

Frequency
Spectrum:

Frequency

dddddddd
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Music Synthesis
Pulsetable Synthesis

V V M ﬂl“ 1# S

- Suitable for instruments
that preseve the envelope
over pitches

- Many wind instruments

Envelope of
the Spectrum
is preserved

Frequency
Spectrum:

Aﬂ‘ 1“ ll‘y 1“ “1 NNWNANAAAAAAAA Frequency
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' I Christian Dittmar, Johannes Zeitler, Stefan Balke, Simon Schwar, and Meinard Mller
Music SyntheS|S istian Di i i w inard Mil

PULSE-IT: Lightweight and Expressive Synthesis of Wind Instrument Playing

. In Late-Breaking Demos of the International Society for Music Information Retrieval Conference (ISMIR), 2025.
PU |Seta ble Synthes |S https://audiolabs-erlangen.de/resources/MIR/2025 DittmarZBSM_WindInstrumentSynth_ISMIR-LBD
c 11
©
2

Pitch A5
880 Hz

Pitch A4
440 Hz
Pitch A3 |
220 Hz

Pitch A2 |
110 Hz

0 5 10 15 20 25 30
Time in seconds
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Music Synthesis
Pulsetable Synthesis

Gain
-

o

Pitch A5
880 Hz

Pitch A4
440 Hz
Pitch A3
220 Hz

Pitch A2
110 Hz

Christian Dittmar, Johannes Zeitler, Stefan Balke, Simon Schwar, and Meinard Muller
PULSE-IT: Lightweight and Expressive Synthesis of Wind Instrument Playing

In Late-Breaking Demos of the International Society for Music Information Retrieval Conference (ISMIR), 2025.
https://audiolabs-erlangen.de/resources/MIR/2025 DittmarZBSM_WindInstrumentSynth_ISMIR-LBD
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Music Synthesis
Pulsetable Synthesis

- P I . . . (1) ' (3) \ (@) -

uise eXtraCthn IS ted|0us Recorded Puls.etable Low-pass Convolution Synthesized

Source —’[ entrold Oscillator Filter Reverb Target
. . Instrument Instrument

= Post-processing involves Gy || Fozsimarr }- «/‘/w-— —\ f— .

manual ,tweaking* , | e

Symbolic ol Micrq— ------------- Inatrument . — Audio Signal = * Pitch, Velocity

= Yielding sophisticated results b i Rt ' | FoTrlectory -~ o Fitter Cutoft

is an art €

Research Question:
Can we efficiently learn the parameters in a data-driven way?

Most important: Pitch, loudness, and timbre (pulses)
- DDSP is one way!

uuuuuuuuu
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Music Synthesis
Differentiable Digital Signal Processing (DDSP)

Input Model /
m. —_— % —_—

Central Idea: Train a model that can ,,operate” a DSP device (e.g.,
Synthesizer, Filter)

\ Output

Control Parameters

- Solution space is constrained, models can be much smaller!

© AudiolLabs, 2026
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Simon Schwar

M U S |C Synth eS|S Differentiable Models for Music

Signal Reconstruction,

Differentiable Digital Signal Processing (DDSP) Adaptation, and Synthesis

Dissertation, under review, 2026.

Target Signal

Funded by
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Music Synthesis

Simon Schwar
Differentiable Models for Music
Signal Reconstruction,

Differentiable Digital Signal Processing (DDSP) Adaptation, and Synthesis

Target Signal

Estimation with 16 DoF

Dissertation, under review, 2026.

AL AT

TR LA T LT

MSE
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-1 0 1
Sample Value
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Music Synthesis

Simon Schwar
Differentiable Models for Music
Signal Reconstruction,

Differentiable Digital Signal Processing (DDSP) Adaptation, and Synthesis

Target Signal

Estimation with 16 DoF

Estimation with one DoF
(frequency)

Dissertation, under review, 2026.

o

LA TR
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= 3" (4[n] — sin(2r2n/f,))
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Music Synthesis
DDSP Example

= Differentiable Gain controller with a
single parameter

= Learning objective: Estimate gain
parameter via Stochastic Gradient
Descent, L1-Loss

Estimated signal after O iterations

0.00 -

Amplitude

—0.25 ~
—0.50 ~
—0.75 A

100 \ / { [ n 7\
—— Target

075 — Estimate

0.50 -

0.25

—1.00 T
0

25

Source: https://intro2ddsp.github.io/

1.0
o 05
T
=
= 00
Q
§ —0.5 4 — Target
—— Original
_1.0..

T T
0 25

T T T T T T
75 100 125 150 175 200
Time (samples)

)

Diff. Gain
Controller

)
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https://intro2ddsp.github.io/

MUS'C Synth eS|S Source: hitps://introZddsp.github.io/
DDSP Example

Estimated signal after O iterations

n n

Target
— Estimate

1.00
0.75 -

0.50 A
0.25 A
0.00 A
=25
—0.50 -
=075
-1.00

Amplitude

0 25 50 75 100 125 150 175 200

T e e e\

Signals are now phase-shifted (90°)
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https://intro2ddsp.github.io/

M u S |C Synth eS|S Source: hitps://intro2ddsp.github.io/
DDSP Example

L oo Estimated signal after 0 |terat|onsr\ _ Waveform L1 loss at different gains
Target |
075 —— Estimate L2
0.50 - \ 1.0 -
Y 0.25- 0.8 1
2 ) @
s 0.00 9 0.6
£ —0.251
0.4
—0.50 -
0.2
—0.75 -
-1.00 T T T T T T T T T 0.60 0.|25 0.;50 0.I75 1.60 1.'25 1.!")0 1.115 2.60
0 25 50 75 100 125 150 175 200 Gain
Signals are now phase-shifted (90°) - No local minima with L1-Loss!
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https://intro2ddsp.github.io/

Music Synthesis
DDSP Example

Estimated signal after O iterations

1.00
0.75 A

0.50 A

0.25 A

0.00 -

—HL25

—0.50 ~

0I5

-1.00

Amplitude

) [4

Target
o Estimate

[ P SRR A

- Choice of foss function matters a lot!

100 125 150 175 200

Source: https://intro2ddsp.github.io/

Spectral magnitude L1 loss at different gains

3.0 A

2.5 1

2.0 A

1.5 A

Loss

1.0

0.5 1

0.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Gain

Simon Schwar and Meinard Muller
Multi-Scale Spectral Loss Revisited
IEEE Signal Processing Letters, 30: 1712-1716, 2023.
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Music Synthesis
Differentiable Pulsetable Synthesis

Pitch* Tonal Timbre

Post-Filter
; h

Pulsetable
: Synthesizer :
Loudness &\X Z :
! Optimized Parameters
e Rk > @se SynthesizerD REEEE | Differentiable DSP

Non_TonaI Tlmbre Simon Schwar, Christian Dittmar, Stefan Balke, Meinard Muller
. o _ Differentiable Pulsetable Synthesis for Wind Instrument Modeling
*) Provided by existing systems/annotations. accepted at [EEE ICASSP, Barcelona, Spain, 2026.

Network
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Tone Attributes: Pitch, Loudness, and Timbre

Amplitude
Amplitude

/, : \\
Frequency (kHz)
/, : \\
Frequency (kHz)

S. Balke et al., “ChoraleBricks: A Modular Multitrack Dataset for Wind Music Research,” TISMIR, 2025.
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Tone Attributes: Pitch, Loudness, and Timbre

[} [} P
o
% 5 : < :
= = S
£ \
£ £
= 74 4 = 74 -
()]
S 721 7, S 721 . 7,
z 70 7 PEEEE——— = : z 70 7 PE——— ot —. :
48 68 1 [ = \ JL_-': 68 1 oy [e— o eEes——— \
E 66 T T T ﬂ- 66 T — T T T T
0 Y/ 0 Y
qc’ .5 1 ’_ qc’ .5 1 ’_
E S S
3 % 3
0 1 1 0 1 I 1 1
v L 74 v/
g < ,, g 5 . < &
- e -
% N G 3 N
T T 1
0
Time (s) Time (s)
. Funded by
© AudiolLabs, 2026 Music Synthesis for Wind Music DFG FDemsi\Che .
orschungsgemeinscna t

Stefan Balke

68

German Research Foundation




Differentiable Pulsetable Synthesis
Results

B

Freq. (kHz)

Gain
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Differentiable Pulsetable Synthesis
Results
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Differentiable Pulsetable Synthesis

Results
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Differentiable Pulsetable Synthesis
Results
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Differentiable Pulsetable Synthesis

Results

B
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Summary
Emerging Topics: Music Synthesis for Wind Music

= Brief overview on datasets in Music Information Retrieval
= Deep Dive on datasets for wind music (ChoraleBricks, ChoraleWind)

= Take home message:
Developing an intuition for your data is very important - leads to new ideas!

= Brief overview on popular synthesis approaches
= Deep dive on Pulsetable Synthesis
= Fundamental concept of Differentiable DSP

= Take home message:
Potential for efficient, interpretable models - combination of Al & DSP

Funded by
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DAGA 2026
23.-26.03.2026 in Dresden

= Annual meeting of the german-speaking acoustic
community

= We (Meinard Muller, Jakob Abel3er, and myself)
organize a special session

Music Information Retrieval
26.03.2026

14 presentations, whole day

Also very interesting:
Musikklanganalyse und Al

T

AD S B

T e
ATRINITT
e U

52. JAHRESTAGUNG FUR AKUSTIK
23.—26. Marz 2026 in Dresden

Forschungsgemeinschaft
rman Research Foundatio

0 giﬁcg"i:&';i Pt Ei'a’:iit't.'n’;“;'
Challenges in Al-based Environmental and Industrial Sound Analysis ’
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Stefan Balke, Axel Berndt, and Meinard Muller

ChoraleBricks: A Modular Multitrack Dataset for Wind Music Research
Transaction of the International Society for Music Information Retrieval
(TISMIR), 8(1): 39-54, 2025.

Stefan Balke, Johannes Zeitler, Vlora Arifi-Miller, Brian McFee, Tomoyasu
Nakano, Masataka Goto, and Meinard Muller

RWC Revisited: Toward a Community-Driven Music Information
Retrieval Corpus

Accepted for TISMIR, 2026.

Christof Weil3, Frank Zalkow, Vlora Arifi-Muller, Meinard Muller, Hendrik
Vincent Koops, Anja Volk, and Harald Grohganz

Schubert Winterreise Dataset: A Multimodal Scenario for Music
Analysis

ACM Journal on Computing and Cultural Heritage (JOCCH), 15(2): 1-18,
2021.

Axel Berndt, Aida Amiryan-Stein, Manuel Peters, Meinard Muller, and Stefan
Balke

ChoraleWind: An Expressive Wind-Quartet Dataset for End-to-End
Rendering from the Neues Thiiringer Choralbuch

Submitted, 2026.

Peter Meier, Meinard Mller, and Stefan Balke:

Analyzing Pitch Estimation Accuracy in Cross-Talk Scenarios: A Study
with Wind Instruments, In Proceedings of the Sound and Music Computing
Conference (SMC), Accepted, 2025.

Simon Schwar, Stefan Balke, and Meinard Mdller:
Measuring Sensory Dissonance In Multi-Track Music Recordings: A
Case Study with Wind Quartets, ISMIR, 2025.

Christian Dittmar, Johannes Zeitler, Stefan Balke, Simon Schwar, and
Meinard Muller

PULSE-IT: Lightweight and Expressive Synthesis of Wind Instrument
Playing

In Late-Breaking Demos of the International Society for Music Information
Retrieval Conference (ISMIR), 2025.

Ben Hayes, Jordie Shier, Gyorgy Fazekas, Andrew McPherson, and
Charalampos Saitis

A review of differentiable digital signal processing for music and
speech synthesis.

Frontiers of Signal Processing, 2024.

Simon Schwar and Meinard Muller
Multi-Scale Spectral Loss Revisited
IEEE Signal Processing Letters, 30: 1712-1716, 2023.

Simon Schwar, Christian Dittmar, Stefan Balke, Meinard Muller
Differentiable Pulsetable Synthesis for Wind Instrument Modeling
accepted at IEEE ICASSP, Barcelona, Spain, 2026.

Meinard Muller

Fundamentals of Music Processing — Using Python and Jupyter
Notebooks

Springer Verlag, ISBN: 978-3-030-69807-2, 2021.
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