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ABSTRACT

Sensory dissonance (SD) quantifies the interference be-
tween partials in a mixture of simultaneously sounding
tones and correlates with the perceived dissonance or un-
pleasantness of this mixture. While it is mainly studied in
music perception, often using synthetic signals or symbolic
inputs, in this paper, we focus on a practical application
and investigate SD as a tool for analyzing the interactions
between voices in multi-track music recordings. Using vi-
sualization and statistical analysis on an existing dataset of
four-part chorales recorded with various wind instruments,
we examine how timbre, tuning, and score influences SD.
To do this, we introduce the notion of relative SD, which
quantifies how individual voices in a multi-track recording
contribute to overall SD of their polyphonic mixture. In ad-
dition to discussing practical aspects of measuring SD be-
tween and within real music signals, our case study shows
potential benefits and limitations of using SD as an anal-
ysis tool in music production, for example, to inform or
automate tasks like take selection or equalization.

1. INTRODUCTION

In music production, the creative process of editing and
mixing can often be aided by objective measures of sound
properties, such as displaying loudness differences with a
level meter or visualizing phase differences between stereo
channels with a goniometer. To our knowledge, a property
that has not yet been considered in this context is the disso-
nance in a track or recording. With the interplay between
consonance and dissonance being considered a core com-
ponent of musical expression [1], such a measure could
give insights into musical properties of a mix, both for rel-
ative comparisons (e.g., to evaluate intonation and voice
blending between different tracks) and as an absolute quan-
tity (e.g., for retrieving sections with high dissonance).
The musical concept of dissonance is a multi-faceted is-
sue [3] with strong cultural influences [4]. While acousti-
cally measurable effects [5,6] have been found to correlate
with subjective dissonance ratings in isolated intervals and
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Figure 1. Excerpt from the chorale GE1 in ChoraleBricks
[2]. (a) Spectrograms of individual voices played with
trumpet (5), clarinet (A), baritone (T) and baritone sax
(B). (b) Peak representation P, (m) for frame m and each
voice v. Dotted lines illustrate the amplitude-weighted dis-
sonance kernels. (c¢) Overall dissonance D of the excerpt.
(d) Relative SD by voice (light: D,, 3, dark: D,, ).

chords [7, 8], they can only serve as indirect proxies for
musical dissonance. In this paper, we explore sensory dis-
sonance (SD) [9], a measure for the interactions between
tonal components in a complex sound [10, 11], as a way
to quantify dissonance in recorded music performances di-
rectly from audio. Similar to the goniometer that does not
measure the subjective impression of the stereo image, the
goal is not to analyze perceptual properties of SD, but to
better understand its behavior in a realistic musical sce-
nario, exploring what it can reveal about the relations be-
tween individual voices in a multi-track recording.

We approach this question with an exploratory case
study using the ChoraleBricks dataset [2]. It comprises
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performances of ten Baroque chorales, each with four
voices—soprano (S), alto (A), tenor (T'), and bass (B)—
that are recorded in isolation and played on several dif-
ferent wind instruments. This way, the dataset provides
a controlled scenario for discerning the influence of dif-
ferent musical aspects, including timbre (instrument char-
acteristics), tuning (pitch deviations), and score (chords
and voicings). As an initial example, we consider an ex-
cerpt from the chorale “Befiehl Du Deine Wege” (GE1 in
ChoraleBricks) in Fig. 1, played with trumpet (S, orange),
clarinet (A, red), baritone horn (7, green), and baritone
saxophone (B, blue). After estimating tonal components
(in this case, the harmonics) over time from each of the
four tracks (Fig. 1a and b), we can calculate the overall SD
(shown in Fig. 1¢) and split it into the relative contributions
of each voice (shown in Fig. 1d). This visualization—
inspired by Sethares’ dissonance score [9]—reveals sev-
eral aspects about SD. For instance, we can observe dif-
ferences between chords (Fig. 1d shows the note onsets of
each voice as vertical lines for orientation), variations in
the contributions of individual voices, and local fluctua-
tions within chords (e.g., around 38 seconds). Exploring
these effects in detail is a main objective of this paper.

In this context, we make three main contributions. First,
we formalize the notion of relative SD (Section 2.1), mea-
suring the contribution of individual tracks to the overall
SD in a music performance, and consider practical aspects
of calculating SD from real signals (Section 2.2). Sec-
ond, we examine the influence of timbre, tuning, and score
on relative SD by introducing new visualizations and con-
ducting systematic experiments with ChoraleBricks (Sec-
tion 3). Third, we outline possible applications of SD for
tasks in music production, including take selection and
equalization (Section 4), and discuss limitations and am-
biguities that arise when measuring SD. A Python library
with all tools used in the experiments and our new chord
annotations for ChoraleBricks are available online. !

2. SENSORY DISSONANCE

The concept of sensory dissonance (SD) plays a significant
role in music research, where it has been employed in per-
ceptual models [8, 12—-14], for the bottom-up construction
of scales and music theories [9, 15], and to analyze intona-
tion and tuning [16, 17]. In these contexts, several models
have been proposed to quantify SD [8, 12—15], all based
on the summation of a (weighted) pure-tone dissonance
across all pairs of tonal components that comprise a com-
plex sound, i.e., all (harmonic and non-harmonic) partials
of all simultaneous tones combined.

Formally, given a set P = {(f1,a1), ..., (fx,ax)} of
K pairs of tonal components with frequency f in Hz and
amplitude a, SD can be calculated with

(fi,ai)€EP
(fja;)€P
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Figure 2. Dissonance kernels d( f;, f;) for f; = 200 Hz.
Blue shaded areas indicate 0.25 and 1 ERB around f;.

where w : R4 x Ry — Ry is an amplitude-dependent
weighting factor and d : R4 x R4 — [0, 1] is a model for
the perceived dissonance between two pure tones. In the
following, we provide an intuitive explanation of these two
terms. Further details can be found on our supplemental
website ! and in [9].

The dissonance kernel d is based on perceptual experi-
ments with sinusoids [11] and it should attain a high value
when the frequency distance is small but not too small.
Fig. 2 shows possible realizations of dissonance kernels
[13-15] around f; = 200 Hz. While these kernels share a
similar shape, they differ in the position of the dissonance
maximum. For example, for the frequency range consid-
ered in Fig. 2, the kernel by Vassilakis et al. [14] (dotted
line) leads to much wider intervals with high dissonance
compared to the narrow kernel used by Berezovsky [15]
(solid line). The experiments in [11] suggest a maximum
of perceived dissonance at around 0.25 critical bands, a
measure for the resolution of auditory perception, often ap-
proximated in terms of equivalent rectangular bandwidth
(ERB, e.g., [18]). Therefore, we explicitly set the maxi-
mum to 0.25 ERB, using the mean frequency (f; + f;)/2
of the pairing to determine this bandwidth. The resulting
kernel is shown as a red curve in Fig. 2 and also visual-
ized with dotted lines around each harmonic in Fig. lc.
Here, the dependency of the kernel shape on frequency is
also visible, with wider kernels for higher harmonics on
the linear frequency axis.

The weighting factor w ensures that pairings with high
amplitudes contribute more to D(P). We use the mini-
mum of the two amplitudes as in [15], which is propor-
tional to the amplitude fluctuation of the beating that oc-
curs between the two sinusoids [9]. Additionally, many
models include an exponent < 1 to account for the non-
linearity of loudness perception [8,9, 15]. However, since
the behavior of exponential compression changes when all
amplitudes are scaled by a constant factor, we use log-
arithmic compression, resulting in the weighting factor
w(a;,a;) = log (1 + min(a;,a;)), where adding 1 en-
sures positive values for w [19]. Finally, it is common to
also include some kind of normalization that makes D(P)
independent of the overall loudness of the sound. We omit
this step here and consider loudness normalization an op-
tional preprocessing step in Section 2.2.

While Eq. 1 allows for a wide range of possible con-
figurations, the conceptual approach to measuring SD in
music recordings remains the same. In the following, we
focus on the specific parametrization described above as
one illustrative example.
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Figure 3. Illustration of considered subsets for relative SD.

2.1 Relative Sensory Dissonance

Extending ideas from [9] and [17], we can decompose
D(P) into contributions from different components of a
sound. In a multi-track polyphonic music scenario, this
may give additional insights into how individual sources or
voices contribute to dissonance. To formalize the decom-
position, we define subsets of P corresponding to different
voices in a sound, so that for an index set V,

P=J P )

veV

Furthermore, for v € ), we define the complementary set

Ps=J Pw 3)

v’ eV\{v}

containing the tonal components of all other voices. Ex-
tending Eq. 1, we compute the SD between the tonal com-
ponents from two separate sets P; and Ps with

D(Py,Ps) := Z w(ai, aj) d(fi, ) “)

(fi,ai)€EP1
(fj,a;)€P2

which we also denote by D » in the following for brevity,
along with D without subscripts for the overall dissonance
D(P,P). Eq. 4 allows us to decompose D for any voice
v € V as shown in Fig. 3 on the left. Here, D,, , represents
the intrinsic SD within a single voice, D5 3 is the SD inde-
pendent of v, and D,, 3 is the relative SD between a voice
and its accompaniment. This results in a final decomposi-
tion D = DU,U + 2D1,7§ + D@ﬁ.

As a concrete example, consider the four-part chorale
case, where V = {S, A, T, B}. The right side of Fig. 3 il-
lustrates the possible relative SD pairings in this scenario.
Particularly relevant are the intrinsic dissonances Dg g,
Dy 4, Dy 7, and Dp g, as well as the relative dissonances
D 53 (depicted in orange), D AR (red), DT,T (green), and
Dy 5 (blue). It becomes evident from the right side of
Fig.’ 3 that the individual D, 7 are not independent, since a
change in any P, influences the relative SD measurements
for all other voices due to the symmetry of the matrix. Yet,
Fig. 1d shows how D,, 3 can still be used to clearly identify
the different contributions to overall SD.

2.2 Tonal Components in Recordings

So far, we have only considered the case where P repre-
sents a sound with constant characteristics. To account for
time-varying music signals, let P(m) represent the tonal
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Figure 4. Illustration of harmonic peak picking for a sin-
gle frame of a bass clarinet signal, showing the original
DFT spectrum (black dots), the cubic spline interpolation
(black line), extremal points of the interpolation function
(red crosses), search range (light blue areas) around FO
multiples (blue ticks), and the local threshold (red line).

components (equivalent to harmonics in the monophonic
case) at a time index m € Z. In a multi-track scenario,
we further require a method to obtain robust estimates of
Py(m) from a time-domain signal z,, for v € V. The fre-
quency resolution of a discrete Fourier transform (DFT)
with any reasonable window size would not be sufficient
for this purpose. Prior methods have used a peak pick-
ing algorithm on the magnitude spectrum, refined with
parabolic interpolation [20] or by zero-padding [9], which
requires intricate fine-tuning of parameters for robust de-
tection of harmonics. Instead, we propose a targeted peak
picking approach that leverages fundamental frequency
(fo) estimates, assuming a quasi-harmonic overtone struc-
tures. fo estimates can be obtained robustly using mono-
phonic algorithms (e.g., [21]), or with predominant [22] or
polyphonic [23] fy estimation algorithms for more com-
plex input signals. Since many musical instruments pro-
duce near-harmonic spectra, this method is applicable to a
wide variety of recordings.

The frequency and amplitude of each harmonic is ob-
tained in three steps, as illustrated in Fig. 4. First, we
construct a cubic interpolating spline representation (black
curve) of the magnitude spectrum (black dots) and com-
pute its derivative, a piecewise quadratic function. Second,
we find the roots of the spline derivative, identifying the
extremal points of the original cubic splines (red crosses).
The largest extremum in the vicinity of n fy (blue rectan-
gles) is then assumed to be the spectral peak corresponding
to the nth harmonic. To refine these estimates (e.g., when
the even harmonics of a clarinet are below background
noise level), we finally apply local thresholding, removing
any peaks whose total magnitude is below a certain value.
The local threshold (red curve) is calculated using a sliding
Hann window with an adaptive width depending on fj, so
that the averaging spans N,, = [1.2 - foN/ fs] frequency
bins. This way, a single harmonic with large magnitude
does not influence the threshold at the neighboring har-
monics. With this method, it is possible to accurately track
harmonics across multiple frames of an STFT without ex-
plicitly modeling continuity between frames. For STFT
frames where the fj estimate indicates an unvoiced frame,
we set Py, (m) = 0.

When using logarithmic compression for w in Eq. 1,
the scale of the amplitudes a; in P,(m) can be arbitrary,
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as long as it is consistent across all voices. It can further
be desirable to remove the influence of loudness (and also
relative level differences between the individual voices),
which can be achieved by normalizing all amplitudes in
P»(m) to sum to one. In the particular case of Chorale-
Bricks voices are recorded in isolation and not in a musi-
cally meaningful loudness balance anyway. Therefore, we
divide each a; by a constant

C = max (c, Z ai), (®)]

(fi,ai)EPy

where limiting C' to not become smaller than ¢ = 0.1
avoids artificially inflating the influence of frames with
very low overall level.

3. SENSORY DISSONANCE IN CHORALEBRICKS

A main goal of this paper is to study the behavior of SD
in a realistic musical scenario. Specifically, we want to
disentangle the influence of different musical properties—
timbre, tuning, and score—of individual voices in a multi-
track recording on the SD values, and to which extent
this measure enables comparisons between different in-
struments, takes, or compositions.

For this exploratory analysis, we use the ChoraleBricks
dataset [2], which provides recordings of ten Baroque four-
part chorales. Their composition style is homophonic, i.e.,
voices follow a synchronized rhythm while forming chords
with a main melody (usually in the soprano), using rela-
tively simple chords and voicings. Furthermore, the dataset
contains isolated recordings of each voice played on sev-
eral different wind instruments, allowing for a comparison
of various four-instrument combinations (ensembles) play-
ing the same chorale. To simplify the notation of ensem-
bles, we introduce shorthands. The ensemble used in most
experiments and visualizations (e.g., Fig. 1) is denoted by
E = (tp,cl,bar,bs), using a tuple of instrument IDs
as shown in Table 1 in the order of S, A, T, and B. To
denote a single instrument being replaced in F, we use
a subscript, for example, Fs—_s; = (fl,cl,bar,bs).
In addition to E (with two woodwinds and two brass
instruments), we assemble a pure woodwinds ensemble
Eywood = (ob,cl,bs,bcl) and a pure brass ensemble
Eprass = (tp, fh,bar,bar), always choosing the in-
strument with the highest number of available recordings
for the respective voice. Finally, as a synthetic baseline
for comparison, we create an ensemble Fj,,,, where each
voice is synthesized using a sawtooth waveform with 20
harmonics and the respective 12-tone equal temperament
(12-TET) frequency for each note as FO. Using these en-
sembles and the excerpt from Fig. 1 as a running example,
we can try to disentangle the influences of timbre, tuning
and score on SD.

3.1 The Influence of Timbre

In Fig. le, large differences between instruments in rela-
tive (lighter color) and intrinsic SD (darker color) can be
observed, most prominently for the 7" and B voice, played
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Figure 5. Amplitude distribution across the first 20 har-
monics in P, for each instrument (averaged over the entire
datset, not showing values below —60 dB). The sawtooth
timbre saw is shown for comparison.

Instrument ID #Notes Dy Dy, HC
Flute fl 449 0.03 1.85 1.55+0.3
Oboe ob 449 0.60 3.65 3.67 +0.7
English Horn ~ eh 460 0.74 370  3.78£0.8
Clarinet cl 909 0.53 343 294 +0.7
Bass Clarinet bcl 545 4.60 6.08 6.98 +£2.0
Alto Sax as 103 0.94 4.38 3.06 + 0.9
Baritone Sax  bs 816 1.92 4.68 399+ 14
All Woodwinds 3731 1.34 397 3.71
Trumpet tp 909 0.22 3.35 3.00 £ 0.8
Fluegelhorn fh 909 0.12 2.75 225+ 0.6
Trombone tb 372 0.45 2.83 3.69+ 1.3
Baritone bar 963 0.16 190 243+0.8
Tuba tba 464 1.12 259 450+13
All Brass 3668 0.41 2.68 3.17
Sawtooth S 449 1.37 576  5.56+0.0
Sawtooth A 460 1.43 7.01 5.56 £ 0.0
Sawtooth T 456 1.50 7.02 556400
Sawtooth B 464 1.71 492 556400
All Sawtooth 1829 1.50 6.18 5.56

Table 1. SD statistics by instrument, showing intrinsic SD
D, ., relative SD D, 3, and the harmonic centroid (HC,
mean =+ standard deviation). Values for the synthetic saw-
tooth ensemble Eg,,, shown for comparison.

on bar and bs. To reveal the cause of these differences,
we first characterize the timbre of the different instruments.
While the full phenomenon of timbre encompasses many
properties of a sound [24], we focus on the the most rel-
evant aspect for SD, namely the distribution of amplitude
across harmonics independent of the overall loudness of
the sound, as expressed by the normalized P,. Fig. 5
shows the average amplitude distribution in the first 20 har-
monics for each instrument in ChoraleBricks. Woodwinds
(except for the flute) tend to have higher values in the up-
per harmonics (a brighter timbre), while flute, fluegelhorn
and baritone horn on average have most sound energy con-
centrated in the low harmonics. We can quantify this dif-
ference with the harmonic centroid (HC), describing the
mean harmonic index weighted by average amplitude, sim-
ilar to the spectral centroid, which is often used as a timbre
descriptor [25]. The HC for each instrument is given in Ta-
ble 1, and we can observe that for example the bass clarinet
(bcl) has its energy centered around the seventh harmonic
(HC of 6.98), while for the flute (£1), the HC indicates that
the most energy is in the fundamental (HC of 1.55).

These differences in timbre naturally also affect both
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Figure 6. Two different takes for B played with bs (per-
formed normally and loudly) for the excerpt from Fig. 1.
Note that both P, are loudness-normalized, so that differ-
ences in D only stem from changes in timbre and tuning.

intrinsic SD D,, ,, and relative SD D,, 5. Table 1 also lists
the average D,, , and D,, 3 for each instrument, which are
calculated relative to E, i.e., by replacing the respective
voice in E' with this specific instrument. For example,
when the trombone played both 7' and B, we consider
Er_., and Ep_.}, for each chorale where the respective
recording is available. We can observe that HC and the
SD values are highly correlated. Furthermore, the instru-
ment choice accounts for 49% of the variation in D,, 3 over
the entire dataset and 78% of the variation in D, ,,, as in-
dicated by the effect size (?) for the Kruskal-Wallis non-
parametric statistical test [26]. This makes the instrument’s
harmonic amplitude distribution the largest predictor of a
voice’s contribution to SD.

In addition, there are also considerable timbre variations
within each instrument, reflected for example in the stan-
dard deviation of HC reported in Table 1. As an illustra-
tive example, Fig. 6 shows two different takes of the B
voice played on bs. In the second take (“loud”), the player
was instructed to play as loud as possible. Notably, despite
the loudness normalization of P,, both D,, , and D,, 5 are
larger by almost a factor of two for the loud take, which
also shows stronger fluctuations of relative SD within the
individual chords. The possibility to influence SD through
variations in an instrument’s timbral qualities may also ex-
plain the reduction in SD towards the end of the example
in Fig. 1, an effect that is not present for the loud take.

3.2 The Influence of Tuning

SD has previously been shown to be a context-sensitive
measure for tuning related to just intonation (JI) [16, 17].
In this section, we aim to quantify how large the effect
of tuning is on SD compared to other influences like tim-
bre. To visualize this in our running example, we virtually
pitch-shift each voice by a certain amount p € [—50, 50]
in cents by multiplying all frequencies in P,(m) with a
factor 2P/1290 We then calculate for each value of p the
new relative dissonance D, 5 against the unmodified other
voices of the ensemble (D, , remains mostly unaffected by
a small pitch shift). In other words, we measure how much
relative SD changes when a performer would change their
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Figure 7. Influence of detuning each voice in E by £50
cents (excerpt from GE1, as in Fig. 1). Chord labels and
sheet music are shown time-aligned for reference.

intonation while the rest of the ensemble plays normally.

The result is shown in Fig. 7. D, , and D, 5 is plot-
ted for each voice separately, and the lines from light blue
(p = —50 cents) to light red (p = 50 cents) indicate the
change in D, 5 with variable tuning. Notably, the funing
sensitivity of D, 7 (i.e, the range between the maximum
and minimum D,,  within a note when p is varied by £50
cents) changes between notes and chords. In particular, for
most major and minor thirds in the excerpt, SD increases
only slightly even for the largest pitch shifts. Consider-
ing the statistics over the entire dataset, we find that for
the ensemble E, the root note has an average tuning sen-
sitivity of 2.71, the minor third of 1.09, the major third of
1.01, and the fifth of 1.70 (only considering chord degrees
with frequent occurrences). We must however account for
the fact that the root note of each chord is often doubled
(in the same or a different octave) in the four-part voicings
of chorales. If we consider only cases where the respective
note is not doubled, we record an average tuning sensitivity
of 1.13 (root), 0.75 (minor third), 0.87 (major third), and
1.62 (fifth). This suggests that SD is more sensitive to the
tuning of the root and fifth than to that of the thirds. Fur-
thermore, in comparison to the mean relative SD by instru-
ment in Table 1, tuning sensitivity in general is relatively
small, so that measuring tuning (e.g., 12-TET and JI, which
often differ only by a few cents) with SD is only meaning-
ful in conditions where timbre remains unchanged.

There are two cases in the excerpt where the visualiza-
tion shows that a change in tuning would significantly re-
duce relative SD. First, the root note of the C:ma j chord
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Chord Type # D

E Ewood Ebrass Esaw
maj 229 15.21 31.74 7.90 29.73
min 119 15.99 34.14 9.02 31.96
maj/3 55 17.65 36.16 10.50 31.65
sus4 16 16.64 34.75 8.72 30.02
min/3 12 19.17 36.52 7.83 27.78
others 32 17.00 33.11 10.25 31.20

Table 2. SD statistics by different chord types. Chord sym-
bols follow the notation scheme from [28].

in the T voice (red box a in Fig. 7) would contribute less to
D if it was played around 25 cents higher. In fact, accord-
ing to the annotated FO, the T" voice is on average 17 cents
flat relative to the octave formed with B. Interestingly, this
does not affect the “optimal tuning” (w.r.t. SD) of B, in-
dicating that the intervals formed with .S and A are stable.
Second, for the minor third of the D:min (2) chord in S
(red box b in Fig. 7), SD would be reduced if the note was
played up to 50 cents lower. Given that this note forms
the musically dissonant interval of a minor second with A,
this is an indication for a case where SD does not exhibit
a local minimum near the interval prescribed by the score.
This can become a problem for approaches where SD is
used as a measure to “optimize” tuning [16, 17].

3.3 The Influence of Score

Finally, we consider the influence of score on SD, in
particular by analyzing differences between chords. In
Fig. 7, a prominent example for the score influence is the
D:min (2) chord that has the highest overall SD in the
excerpt. The relative SD of S, A, and B, as well as the
overall SD significantly drops when the musically disso-
nant suspended second is resolved in voice A.

Since the chord vocabulary of the compositions is rel-
atively limited (major and minor chords in root position
account for 75% of all chords), we can statistically ana-
lyze differences between chord types by grouping them as
shown in Table 2, using the chord labels without root. In
particular, we compare how the chord type influences the
overall SD for F, Fyood, Fbrass, and Fgayw by computing
the mean D over the entire dataset. In fact, the variations
in mean SD by chord type are mostly consistent across
ensembles. For example, the mean SD of maj chords is
lower than that of min chords. /3 chords with the third in
B are more dissonant, except for min/3 in Eyass. These
trends partly resemble a ranking based on subjective disso-
nance ratings of triads and tetrads [27], replicating a pre-
vious result with synthetic data [7]. However, even within
one ensemble, we find that the chord type only accounts
for between 6% (FEyo0d) and 11% (Ehrass) of the variation
in D (according to the Kruskal-Wallis test as above).

Another score-related property of each chord is its voic-
ing, i.e., the assignment of notes to the individual voices.
Two effects can be observed in the statistics for individ-
ual voices of Eg,, in Table 1. First, the average D, ,
increases towards lower voices. This follows from more
harmonics falling into the critical bands around neighbor-

ing harmonics, as can be observed in Fig. 1b. Second, the
average D, 7 is higher for middle voices, indicating that
these voices tend to contribute more to the overall SD, in-
dependent of timbre and tuning, which is fixed in Eg,y .

4. DISCUSSION & APPLICATION EXAMPLES

From this analysis, we can draw three main conclusions
for using SD as an informative measure in music produc-
tion. First, the relative SD of individual tracks provides
insights into their musical interaction, e.g., in terms of tun-
ing and the musical dissonance of intervals. However, as
an absolute measure, SD is mainly determined by instru-
ment timbre, prohibiting direct comparisons across instru-
ment classes. Second, SD may offer an advantage over
FO-based tuning analysis because it is context-sensitive,
accounting for intervals between all voices. The sensi-
tivity to tuning differences depends on the chord degree
and voicing, where even strongly detuning a third by £50
cents may in some chords only slightly affect the SD mea-
sure. Third, while systematic score influences are present,
they are comparatively small, which makes applications
like musicological analysis as outlined in [9] only feasi-
ble within controlled scenarios. This suggests a number of
practical applications for SD measures, two of which we
briefly want to outline in the following.

Take Selection: Comparing the relative SD between
multiple takes of the same excerpt played with the same
instrument, like in Fig. 6, can indicate differences in terms
of timbre and/or tuning in relation to a specific accompa-
niment. Together with other musically motivated quality
measures (e.g., [29]), this could serve as the basis for sug-
gesting an edit sequence that aligns best with the desired
properties of the track. As an example, the fifth note of the
T voice in the excerpt from Fig. 1 could be replaced with a
version from a different take that is more in tune compared
to the other voices. Since in classical music production,
sound engineers sometimes have to deal with dozens of
takes for a single passage, even sorting the takes by SD in
a certain chord could aid the selection process.

Equalization: Since timbre is the primary contribut-
ing factor to relative SD, we can aim to modify it through
equalization to decrease (or increase) SD while still pre-
serving the instrument’s characteristic sound. As an ex-
ample, applying a filter to the B voice in the excerpt from
Fig. 1, reducing magnitudes by only 6 dB between 2 and 4
kHz, leads to a reduction of the mean D, 5 by 11% (from
3.53 to 3.15) within the excerpt. This adaptation could also
be made context-dependent, e.g., by reducing the ampli-
tude of harmonics that contribute strongly to SD only when
interfering voices are present in the mix.

Finally, it should be emphasized again that SD is not
measuring the actual perceived dissonance and that vari-
ations in the model assumptions for SD, as well as other
acoustic measures like those based on harmonicity (e.g.,
[6, 30]), could yield significantly different, but equally
valid results. Understanding the properties of different dis-
sonance measures in realistic musical scenarios will be key
to establishing them as a music production tool.
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