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Abstract. Pitch estimation in real time is essential for a wide range
of Music Information Retrieval (MIR) applications, including intonation
monitoring, music education, and interactive systems. Many of these use
cases, such as ensemble rehearsal settings, require low-latency, multi-
channel processing on resource-constrained devices. While recent neural
approaches offer high accuracy, they often fall short in real-time per-
formance due to computational demands. In this paper, we revisit the
well-established SWIPE algorithm and introduce RT-SWIPE, a real-time
variant enabled by using causal windowing. We further propose a delay-
tolerant evaluation metric that extends Raw Pitch Accuracy (RPA) to
account for algorithmic delays. Experimental results on synthetic signals
and multi-track ensemble recordings demonstrate that RT-SWIPE pro-
vides a practical balance of latency, accuracy, and efficiency. Although
our study focuses on wind orchestra scenarios, the method is broadly
applicable to similar real-time settings.
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1 Introduction

Real-time pitch estimation plays a crucial role in Music Information Retrieval
(MIR), with applications ranging from intonation monitoring [7] and music ed-
ucation [17] to music scene analysis [8] and interactive gaming [13]. Many of
these applications operate on resource-constrained platforms, such as smart-
phones, and demand low-latency, multi-channel processing [6]. In such contexts,
lightweight and real-time capable algorithms such as YIN [5] are often favored
over more computationally intensive methods like PYIN [10] and CREPE [9], de-
spite potential trade-offs in estimation accuracy.

The SWIPE algorithm is a well-established method for pitch estimation, recog-
nized for its robustness under real-world conditions [3]. Although not among the
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Fig. 1. Overview of window positioning strategies for real-time audio processing with
SWIPE. (a) Non-causal, center-aligned windows used in the original (offline) SWIPE
algorithm. (b) Causal, center-aligned windows with a constant delay for real-time
processing. (c¢) Causal, right-aligned windows.

most recent developments, SWIPE remains relevant due to its resilience to noise
and crosstalk—a critical factor in the context of wind music ensembles [12].
Its use of the Fast Fourier Transform (FFT) ensures computational efficiency,
enabling real-time, multi-channel processing even on resource-constrained hard-
ware. While neural network-based approaches may achieve superior pitch accu-
racy, their computational complexity and hardware demands often limit their
applicability in low-latency, real-time scenarios. In addition, the structure of the
spectral kernels in SWIPE offers a flexible foundation for further adaptations.
Recent developments such as differentiable SWIPE (dSWIPE), which introduces
trainable parameters, demonstrate the algorithm’s ongoing relevance and adapt-
ability [16]. SWIPE was originally developed for offline pitch estimation. Figure la
illustrates this offline setting, where an input waveform is correlated with a set
of analysis windows of varying lengths to estimate the pitch at a given prediction
point. This configuration is inherently non-causal, as it requires access to future
input samples.

A causal adaptation is shown in Figure 1b: By introducing an artificial delay
equal to half the length of the longest analysis window, the algorithm can be
rendered causal, as it no longer depends on future data. In the illustrated exam-
ple, the input is a sinusoidal signal with linearly increasing frequency. Due to the
uniform shift of all windows, pitch estimates for higher frequencies—which rely
on shorter windows—may suffer from reduced accuracy, as the analysis does not
capture the most recent signal content. This limitation can introduce a system-
atic bias toward lower frequencies, particularly problematic in musical contexts
involving glissandi or rapid note changes.

As shown in Figure 1c, this issue can be mitigated by right-aligning all analy-
sis windows with respect to the prediction point. This strategy ensures that each
window captures the most up-to-date input samples. Similar approaches were
used before, as demonstrated in [2], which explored frequency dependent latency
for the Constant-Q Transform (CQT). While the overall delay—determined by
the longest window—remains unchanged, the responsiveness of shorter windows
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improves substantially. Since these windows correspond to higher frequencies,
which typically exhibit faster temporal variation, the alignment helps preserve
estimation accuracy during fast transitions. In contrast, longer windows associ-
ated with lower frequencies are less affected, as low-frequency content tends to
vary more slowly.

In our research efforts, we aim to apply pitch estimation in ensemble settings,
e.g., wind ensembles or orchestras. In such contexts, low latency is essential, as
many channels must be processed simultaneously in real time. Furthermore,
the presence of variable acoustics and interference from other instruments poses
additional challenges, establishing ensemble environments as a demanding yet
valuable testbed for real-time pitch estimation. Our previous studies identify
SWIPE as the most suitable approach for these scenarios. Compared to CREPE, it
is significantly less computationally demanding, and it offers greater robustness
to cross-talk than YIN [12].

This paper continues this line of research by adapting SWIPE to operate in
a causal manner, making it suitable for real-time applications. We also con-
duct systematic experiments on ensemble recordings, closely aligned with our
target use case. During our evaluation, we observed that Raw Pitch Accuracy
(RPA) exhibits limitations, particularly when applied to real-time scenarios. To
address this, we propose an extension to the RPA metric that accounts for tim-
ing tolerances. While our experiments focus specifically on ensemble music, the
underlying concepts and findings are applicable to a broader range of real-time
pitch estimation tasks.

The remainder of the paper is structured as follows. Section 2 introduces the
RT-SWIPE algorithm and analyzes its computational efficiency in multi-channel
scenarios. Section 3 presents systematic experiments on wind ensemble record-
ings and compares RT-SWIPE to state-of-the-art pitch estimation methods. In
addition, we examine the influence of algorithmic delays on the standard Raw
Pitch Accuracy (RPA) metric and propose an extension to address its limitations
in real-time settings. Finally, Section 4 summarizes our findings and outlines di-
rections for future work. Additional materials and resources are available on a
supplemental website.

2 Real-Time SWIPE

Our real-time approach builds upon the original SWIPE algorithm [3]. In this
section, we outline the key components of SWIPE that are relevant to our real-time
modifications. The SWIPE algorithm estimates pitch by examining the harmonic
structure of a sound. It utilizes pitch candidate kernels derived from a sawtooth
waveform and correlates these with the spectrum of an input signal to identify
the best match. The candidate with the highest correlation score is selected as
the estimated pitch.

The SWIPE algorithm employs different window sizes to accurately estimate
the short-time spectrum of an input audio signal. For a given set of predefined

! https://www.audiolabs-erlangen.de/resources/MIR /2025- CMMR-RTSWIPE
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pitch candidates f;, each represented by a frequency-domain kernel, we determine
the optimal window sizes N; that maximize the overlap between these kernels
and the spectral lobes. These window sizes are calculated as follows:

N=2k (1)

fi

where fs stands for the sampling rate of the input signal in Hz. However, instead
of computing individual spectrograms for each pitch candidate, SWIPE approxi-
mates this process by calculating spectrograms for a limited set of window sizes
that are powers of two. This approach requires interpolation between window
sizes, but significantly reduces computational costs [3]. To generate the spec-
tral representation, SWIPE utilizes window sizes tailored to the pitch range. Let
Sfmin and fiax denote the minimum and maximum expected frequencies in Hz,
respectively. We define:

o=lon ()] o= (Rl

From these, the smallest and largest window sizes are calculated as:

Nmin = 2(1’ Nmax = Qb- (3)

Using these boundaries, we define a set K that includes all power-of-two window
sizes used for spectrogram computation:

K= {-]\/vminv2 : aniln --~7Nmax} = {2a72a+17 -~~72b}~ (4)

For more details on the original method, we refer to [3].

2.1 Real-Time Audio Processing

In real-time audio processing, data is managed block-wise. These blocks, or
frames, contain H € N samples each and do not overlap. We refer to H as
the hop size. When using SWIPE for real-time audio processing, three key con-
siderations arise: (1) Real-time processing follows strict time constraints. The
computation time, or processing latency, must not exceed a single frame period
Tframca given by:

H

ﬂrame fs . (5)
This constraint is particularly relevant for multi-channel scenarios, where the
processing latency may scale with the number of channels. (2) A single audio
frame is typically smaller than the maximum window size Npax € N required
for estimation. To address this, we need to implement audio buffering. (3) In
real-time processing, only past data is accessible. Since analysis windows are
usually centered, as illustrated in Figure 1b, estimates are delayed by half the
maximum window size Npax, introducing algorithmic delay.
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Fig. 2. Detailed view of adjustable window positioning with delay factor A for
RT-SWIPE: (a) Centered windows share a common maximum delay. (b) Right-aligned
windows use the latest audio data for estimation, each with individual delays.

To manage larger window sizes, we use a rolling buffer B that efficiently
handles continuous audio input by cyclically adding new frames and discarding
the oldest ones, defined as follows:

B € RO Nmax, (6)

C € N is the number of audio channels, and Np,.x is the largest window size (see
Equations 2 and 3).

For each new frame of audio input, an estimate is generated through a
sequence of computations that must be completed within a single frame pe-
riod Tiame- The following steps are performed:

(a) Update buffer B with the latest frame of audio input.

(b) For each window size N; € K, extract the corresponding data from the buffer
according to the window positioning (see Section 2.2).

(¢) Apply a Hann window to each window.

(d) Compute the Discrete Fourier Transform (DFT), vectorized over all C' chan-
nels to ensure computational efficiency.

(e) Follow the original method to correlate the resulting spectra with pitch can-
didate kernels and select the candidate with the highest score as the esti-
mated pitch.

2.2 Adjustable Window Positioning

In Figure 2a, we illustrate a more detailed view of causal centered windows
as used in the RT-SWIPE method. All windows are not centered around the
prediction point (compare to the non-causal case in Figure la); instead, each
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window extracts data from the center of buffer B, containing only past samples.
Consequently, estimates are delayed by half the maximum window size Nyax,
even though more recent samples could be used for smaller windows (higher
frequencies).

To address this, we propose a right-aligned window positioning (Figure 2b),
where each window uses the most recent audio samples available in buffer B.
This reduces the delay, especially for small window sizes, thereby affecting the
expected algorithmic delay for high pitches. To interpolate between centered
(offline) and right-aligned (real-time) window positioning, we introduce a nor-
malized delay factor A € [0, 1], where A =1 corresponds to centered and A =0
to right-aligned positioning.

For each delay factor A, the corresponding delay size D in samples is defined as

Nmax J

(7)

which describes the position at which the windows are intended to be centered,
i.e., the position of the black dashed line in Figure 2. Depending on the individual
window sizes N;, we further introduce window delays (given in samples)

D(A) = {A- .

N;
dn, = max (27D> , (8)

which represent the positions at which the windows are actually centered, consid-
ering that only past samples are available. These center positions are illustrated
by red lines in Figure 2.

For right-aligned window positioning (A = 0), the window delays oy vary,
introducing a pitch-dependent delay. Low pitches corresponding to large windows
have large delays, while high pitches with small windows have small delays. In
contrast, centered window positioning (A = 1) provides a frequency-independent
delay determined by the maximum window size Ny ax.

2.3 Multi-Channel Efficiency

For our research and field studies on wind music ensembles, we require not only
real-time pitch estimation but also the ability to handle multiple input channels
simultaneously. To this end, we investigate the multi-channel efficiency of the
RT-SWIPE implementation and test how many input channels can be processed
on consumer-level hardware.

As illustrated in Figure 3, we measure the real-time factor (RTF) as the
number of input channels increases, identifying the maximum number of channels
for which the RTF remains 1. An RTF smaller than 1 indicates computations
take longer than a frame period, making it unsuitable for real-time processing.
In contrast, an RTF greater than 1 means computations are faster than required,
making it suitable for real-time applications. For our efficiency experiment, we
conduct tests on a Mac Mini 2023 equipped with an Apple M2 Chip and 16 GB
of RAM. We compare RT-SWIPE with an offline implementation of SWIPE [15],
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Fig. 3. Efficiency of RT-SWIPE: Real-Time Factor (RTF) over number of channels.

which is not optimized for frame-based processing and, therefore, serves as a
lower performance bound. For an upper performance benchmark, we use the
YIN implementation from librosa [11], a frame-based algorithm known for its
speed and efficiency due to its autocorrelation method.

While the YIN implementation can process up to 38 channels on our test
computer in real time, the offline SWIPE implementation can handle up to 7.
In contrast, RT-SWIPE achieves a solid balance by supporting up to 20 chan-
nels in parallel. This highlights the trade-off between computational efficiency
and robustness in pitch estimation, with SWIPE-based methods generally offering
greater reliability in noisy, real-world scenarios compared to YIN [12].

3 Experiments

Dataset. Our experiments are performed on the ChoraleBricks dataset, a com-
pilation of 193 multi-track recordings featuring wind instruments such as brass
and woodwinds [1]. The dataset includes performances of 10 different chorale
pieces, with soprano, alto, tenor, and bass parts played by different instruments.
In addition to the multi-track recordings, ChoraleBricks includes FO annota-
tions, interactively generated using Sonic Visualiser (v5.0.1) [4] and the pYIN
VAMP plugin (v3) [10]. These annotations were verified through sonification
methods [14] and manually corrected as needed. The fundamental frequency
(fo) of reference annotations range from 38.19 Hz (played by a tuba) to 1250.97
Hz (played by a flute).

Ezxperimental Setup. In our experiment, we utilize RT-SWIPE with right-aligned
window positioning (A = 0). We compare its performance against the original
SWIPE method as implemented by the Python library 1ibf0 [15], and YIN [5], as
implemented in 1ibrosa.? We also compare it with CREPE [9], using the official
implementation available on GitHub.? The experiments are conducted with a

2 We specifically used commit ebd878f, which includes recent updates and bug fixes
for YIN and PYIN.
3 https://github.com/marl/crepe.
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Fig. 4. RPA with a 25-cent tolerance over frequency on the ChoraleBricks dataset

for SWIPE, YIN, CREPE, and RT-SWIPE. (a) Instruments without cross-talk. (b) Instru-

ments with cross-talk: Target instrument signals are mixed with a randomly selected

interfering instrument from a different voice, using a signal-to-noise ratio (SNR) of 5
dB. Background bars show the pitch distribution in the ChoraleBricks dataset.

sample rate f; = 44.1 kHz and a hop size H = 512 samples. All estimators
operate within a frequency range from note C1l (approximately 32.70 Hz) to
note A6 (1760 Hz), effectively covering the entire range of the ChoraleBricks
dataset. SWIPE and RT-SWIPE, the cent resolution is configured to 10 cents. For
the pitch evaluation, we employ RPA with a tolerance of 25 cents.

3.1 Results

In Figure 4a, we present the frequency-dependent evaluation results of our ex-
periment. For each estimated frequency, we check if it matches the reference
within the cent tolerance. We sort this binary data (1 = correct; 0 = not cor-
rect) by annotation frequency and apply a Hanning window-based convolution
to smooth the results and achieve RPA values over frequency. The RPA values
for SWIPE are illustrated by the black solid line, those for RT-SWIPE are shown by
the blue dotted line, CREPE is represented by the green dash-dotted line, and YIN
is depicted with the orange dashed line. The step function, with a grey shaded
area, indicates the density of fy reference annotations, helping to understand
the frequency distribution in the ChoraleBricks dataset. With this, we identify
that most notes are around 300 Hz, whereas notes at 50 Hz or 1 kHz are rarely
played.

Across the dataset, SWIPE achieves an overall RPA of 0.960, while YIN records
an RPA of 0.952, and CREPE achieves 0.961, indicating very similar performance
among these algorithms. These results align with findings from previous stud-
ies [12]. However, RT-SWIPE shows a lower RPA of 0.931.

As illustrated in Figure 4a, the decrease in RPA for RT-SWIPE is frequency-
dependent; all algorithms perform similarly above 500 Hz. For instance, at 200
Hz, the RPAs for SWIPE, YIN, and CREPE are 0.963, 0.948, and 0.959, respec-
tively, compared to 0.922 for RT-SWIPE. At 50 Hz, the differences become more
pronounced: SWIPE, YIN, and CREPE have RPAs of 0.490, 0.492, and 0.486 re-
spectively, while RT-SWIPE falls to 0.434.
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Fig. 5. (a) Reference annotation of a vibrato test signal (black line) with estimates for
different delay factors A. (b) Error of RT-SWIPE (A = 0) estimates compared to the
reference in cents, with corresponding RPA values.

Figure 4b shows the results of the different approaches in a cross-talk sce-
nario. Here, target instruments are mixed with randomly selected interfering
instruments from a different voice, using a signal-to-noise ratio (SNR) of 5 dB.
As observed in our previous study [12], YIN is most susceptible to interference
from cross-talk. CREPE achieves the highest overall accuracy, while SWIPE offers
a favorable balance between performance and computational efficiency. Notably,
all approaches exhibit increased sensitivity to cross-talk in frequency regions
above 200 Hz.

The observed deviations of RT-SWIPE arise from a mismatch between real-
time estimation and the RPA metric, which assumes perfect temporal alignment
between estimates and reference annotations. In real-time settings, however,
causal windowing introduces algorithmic delays—causing accurate but slightly
delayed estimates to be penalized as incorrect.

3.2 Results with Time Tolerance

In the following, we illustrate the algorithmic delays introduced through the
causal windowing with a synthetic test signal. In Figure 5a, the reference f,
trajectory of the test signal is shown as a black line. This trajectory features
sinusoidal oscillations around a base frequency fpase, resembling a vibrato pat-
tern. The modulation has a frequency of foa = 1 Hz and an amplitude of
Anod = 0.2 - fpase- The test signal includes four segments, each two seconds
long, where the base frequency fpase doubles sequentially from 50 Hz to 100 Hz,
200 Hz, and finally 400 Hz. We sonify this fy trajectory using the libsoni [14]
toolbox with the function sonify_£0, utilizing 20 partials with individual am-
plitudes of 1/20, at a sampling rate f; of 44.1 kHz to mimic a harmonic signal.
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The test signal is analyzed with two delay factors A = 1 (centered) and A =0
(right-aligned) (fmin = 30 Hz, fiax = 700 Hz, fs = 44.1 kHz, H = 512 samples).
The centered window positioning with a delay factor of A = 1 is illustrated by
the blue dotted line in Figure 5a. The estimated trajectory closely resembles
the original reference trajectory, although there is a constant algorithmic delay
of 186 ms. This delay stems from the window delay associated with the largest
window (Nmax)-

In contrast, right-aligned window positioning with A = 0 is illustrated by the
red dashed line in Figure 5a. Like the center-aligned configuration, this trajectory
closely follows the reference but exhibits a frequency-dependent delay rather than
a constant one. Specifically, the delay decreases with increasing pitch: at 50 Hz,
the delay is approximately 80 ms; at 100 Hz, it drops to around 40 ms; at 200 Hz,
to about 20 ms, and at 400 Hz, to roughly 10 ms.

In Figure 5b, the red line represents the estimation error in cents between
the reference and RT-SWIPE with right-aligned window positioning (A = 0). The
green shaded area indicates a 50-cent tolerance used for evaluating the RPA.
For the 400 Hz segment (seconds 6 to 8), the error curve remains well within the
tolerance band, resulting in a high RPA of 0.966. At 200 Hz (seconds 4 to 6), the
RPA drops to 0.638, and further declines to 0.322 for the 100 Hz segment (seconds
2 to 4). The lowest RPA of 0.178 is observed in the 50 Hz segment (seconds 0 to
2), where large portions of the error curve fall outside the tolerance range.

This example indicates that strict frame-based evaluation, like RPA, may not
be ideal for evaluating real-time signals with delayed estimates. Similar to how
cent tolerance considers pitch estimates within a certain pitch range as correct
(see the green area in Figure 5b), managing delayed estimates also requires a
time tolerance (see the blue area in Figure 5a).

To address this limitation, we propose extending the RPA metric by incorpo-
rating a time tolerance in addition to the usual cent-based pitch tolerance. For
each reference frame, we evaluate not only the pitch estimate at the same time
frame but also those in subsequent frames within a specified time window 7 € R
(given in ms). If any of these estimates fall within the allowed cent tolerance
(e.g., £25 ms), we count the reference frame as correctly estimated. Since we
are dealing with real-time systems, the tolerance window includes only future
frames, consistent with the causal nature of the application.

Figure 6a and Figure 6b illustrate the effect of varying time tolerances on our
evaluation, shown for scenarios without and with cross-talk, respectively. At 7 =
0 ms, the result matches the original frame-based evaluation from Figure 4. As 7
increases, RPA values improve, especially at lower frequencies where algorithmic
delays are more pronounced. With 7 = 23.2 ms, the RPA aligns more closely with
the offline baseline (SWIPE). When 7 is increased to 46.4 ms, the RPA results are
nearly identical to the SWIPE baseline at lower frequencies and slightly higher at
higher frequencies. This indicates that estimation accuracy degradations are a
result of delayed estimates—a problem that is not taken into account by standard
RPA measures.
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Fig. 6. RPA with a 25-cent tolerance over frequency on the ChoraleBricks dataset
for RT-SWIPE at varying time tolerances 7, using SWIPE as a reference. (a) Instruments
without cross-talk. (b) Instruments with cross-talk: target instrument signals are mixed
with a randomly selected interfering instrument from a different voice, using a signal-
to-noise ratio (SNR) of 5 dB.

4 Conclusions

In this paper, we present RT-SWIPE, a real-time adaptation of the SWIPE al-
gorithm with adjustable window positioning to reduce pitch estimation delays.
Our analysis shows that it supports real-time processing of up to 20 channels
on consumer hardware. Experiments with synthetic signals highlight that while
RT-SWIPE reduces algorithmic delay, frame-based metrics like RPA can misrepre-
sent delayed yet accurate estimates. To address this, we propose a time-tolerant
extension to RPA. Tests on real-world data confirm that RT-SWIPE preserves
the accuracy of the original method while enabling real-time use with controlled
delay characteristics.

In future work, we plan to use RT-SWIPE as the algorithmic backbone for
a range of applications in ensemble music. One promising direction is the de-
velopment of tools that provide musicians with objective intonation feedback
to support and enhance their auditory skills. Beyond these application-oriented
goals, we also see potential in further advancing the algorithm itself. In partic-
ular, dSWIPE, a differentiable extension of SWIPE, offers a compelling research
avenue. By enabling the training of spectral templates specific to individual
instruments, it may further improve robustness in acoustically challenging con-
ditions, especially in scenarios with significant cross-talk between sources.
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